Self-Assembled pH-Sensitive Fluoromagnetic Nanotubes as Archetype System for Multimodal Imaging of Brain Cancer

Chiara Villa, Marcello Campione, Beatriz Santiago-González, Francesco Alessandrini, Silvia Erratico, Ileana Zucca, Maria Grazia Bruzzone, Laura Forzenigo, Paolo Malatesta, Michele Mauri, Elena Trombetta, Sergio Brovelli, Yvan Torrente, Francesco Meinardi, Angelo Monguzzi

Research output: Contribution to journalArticle

Abstract

Fluoromagnetic systems are recognized as an emerging class of materials with great potential in the biomedical field. Here, it is shown how to fabricate fluoromagnetic nanotubes that can serve as multimodal probes for the imaging and targeting of brain cancer. An ionic self-assembly strategy is used to functionalize the surface of synthetic chrysotile nanotubes with pH-sensitive fluorescent chromophores and ferromagnetic nanoparticles. The acquired magnetic properties permit their use as contrast agent for magnetic resonance imaging, and enable the tracking of tumor cell migration and infiltration responsible for metastatic growth and disease recurrence. Their organic component, changing its fluorescence attitude as a function of local pH, targets the cancer distinctive acidity, and allows localizing and monitoring the tumor occurrence and progression by mapping the acidic spatial distribution within biopsy tissues. The fluoromagnetic properties of nanotubes are preserved from the in vitro to the in vivo condition and they show the ability to migrate across the blood brain barrier, thus spontaneously reaching the brain tumor after injection. The simplicity of the synthesis route of these geomimetic nanomaterials combined with their demonstrated affinity with the in vivo condition strongly highlights their potential for developing effective functional materials for multimodal theranostics of brain cancer.

Original languageEnglish
Article number1707582
JournalAdvanced Functional Materials
DOIs
Publication statusPublished - 2018

Keywords

  • Blood brain barrier
  • Cancer imaging
  • Fluoromagnetic nanotubes
  • Multifunctional probes
  • Self-assembled nanomaterials

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Condensed Matter Physics
  • Electrochemistry

Fingerprint Dive into the research topics of 'Self-Assembled pH-Sensitive Fluoromagnetic Nanotubes as Archetype System for Multimodal Imaging of Brain Cancer'. Together they form a unique fingerprint.

  • Cite this