Sex Differences in Heart Rate Nonlinearity by Multifractal Multiscale Detrended Fluctuation Analysis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent developments of detrended fluctuation analysis (DFA) provide multifractal/multiscale (MFMS) descriptions of the heart rate self-similarity, a promising approach to cardiovascular complexity. However, it is unclear whether the MFMS DFA may also describe the nonlinear components of heart rate variability. Our aim is to define MFMS DFA indices for quantifying the short-term and long-term degree of the heart-rate nonlinearity and to apply these indices to detect possible sex-related differences.We recorded the inter-beat-interval (IBI) series in 42 male and in 42 female healthy participants sitting at rest for about 2 hours. For each series j, we generated 100 phase-randomized surrogate series. We applied the MFMS DFA to estimate the self-similarity coefficients α over scales τ between 8 and 512 s and moment orders q between -5 and +5, obtaining coefficients for the original series, αO,j (q, τ), and for each surrogate, αi,j (q, τ) with 1≤i≤100. We first evaluated πj(q, τ), percentile of αi,j (q, τ) distribution in which was αO,j (q, τ). Then we calculated the percentages of scales where πj(q, τ) was <5% for 8≤τ≤16 s (short-term nonlinearity index NL1(q)) and for 16≤τ≤512 s (long-term nonlinearity index NL2(q)). We found that NL1(q) was generally greater than 50% at all q≥0 but q=2 (i.e., moment order of the monofractal DFA), while at q<0 it was high in males only, with significant sex differences at q=-1 and q=-2. Results indicate that the multifractal DFA may highlight nonlinear heart-rate components at the short scales that are not revealed by the traditional monofractal DFA and that appear related to gender differences.Clinical Relevance - This supports the use of MFMS DFA to integrate the linear information from traditional spectral methods of heart rate variability in clinical studies aimed at improving the stratification of the cardiovascular risk.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages710-713
Number of pages4
ISBN (Electronic)9781728119908
DOIs
Publication statusPublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
CountryCanada
CityMontreal
Period7/20/207/24/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Sex Differences in Heart Rate Nonlinearity by Multifractal Multiscale Detrended Fluctuation Analysis'. Together they form a unique fingerprint.

Cite this