Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial

Rocco Salvatore Calabrò, Antonino Naro, Margherita Russo, Placido Bramanti, Luigi Carioti, Tina Balletta, Antonio Buda, Alfredo Manuli, Serena Filoni, Alessia Bramanti

Research output: Contribution to journalArticlepeer-review

Abstract

BACKGROUND: The use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach. We assessed whether the wearable exoskeleton, Ekso™, could get higher gait performance than conventional overground gait training (OGT) in patients with hemiparesis due to stroke in a chronic phase, and foster the recovery of specific brain plasticity mechanisms.

METHODS: We enrolled forty patients in a prospective, pre-post, randomized clinical study. Twenty patients underwent Ekso™ gait training (EGT) (45-min/session, five times/week), in addition to overground gait therapy, whilst 20 patients practiced an OGT of the same duration. All individuals were evaluated about gait performance (10 m walking test), gait cycle, muscle activation pattern (by recording surface electromyography from lower limb muscles), frontoparietal effective connectivity (FPEC) by using EEG, cortico-spinal excitability (CSE), and sensory-motor integration (SMI) from both primary motor areas by using Transcranial Magnetic Stimulation paradigm before and after the gait training.

RESULTS: A significant effect size was found in the EGT-induced improvement in the 10 m walking test (d = 0.9, p < 0.001), CSE in the affected side (d = 0.7, p = 0.001), SMI in the affected side (d = 0.5, p = 0.03), overall gait quality (d = 0.8, p = 0.001), hip and knee muscle activation (d = 0.8, p = 0.001), and FPEC (d = 0.8, p = 0.001). The strengthening of FPEC (r = 0.601, p < 0.001), the increase of SMI in the affected side (r = 0.554, p < 0.001), and the decrease of SMI in the unaffected side (r = - 0.540, p < 0.001) were the most important factors correlated with the clinical improvement.

CONCLUSIONS: Ekso™ gait training seems promising in gait rehabilitation for post-stroke patients, besides OGT. Our study proposes a putative neurophysiological basis supporting Ekso™ after-effects. This knowledge may be useful to plan highly patient-tailored gait rehabilitation protocols.

TRIAL REGISTRATION: ClinicalTrials.gov , NCT03162263 .

Original languageEnglish
Pages (from-to)35
JournalJournal of NeuroEngineering and Rehabilitation
Volume15
Issue number1
DOIs
Publication statusPublished - Apr 25 2018

Fingerprint Dive into the research topics of 'Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial'. Together they form a unique fingerprint.

Cite this