TY - JOUR
T1 - Shotgun proteomics coupled to nanoparticle-based biomarker enrichment reveals a novel panel of extracellular matrix proteins as candidate serum protein biomarkers for early-stage breast cancer detection
AU - Fredolini, Claudia
AU - Pathak, Khyatiben V.
AU - Paris, Luisa
AU - Chapple, Kristina M.
AU - Tsantilas, Kristine A.
AU - Rosenow, Matthew
AU - Tegeler, Tony J.
AU - Garcia-Mansfield, Krystine
AU - Tamburro, Davide
AU - Zhou, Weidong
AU - Russo, Paul
AU - Massarut, Samuele
AU - Facchiano, Francesco
AU - Belluco, Claudio
AU - De Maria, Ruggero
AU - Garaci, Enrico
AU - Liotta, Lance
AU - Petricoin, Emanuel F.
AU - Pirrotte, Patrick
N1 - Funding Information:
This work was supported by institutional funding the Translational Genomics Research Institute and George Mason University. This work was partly supported by the Italian Istituto Superiore di Sanità in the framework of the Italy/USA cooperation agreement between the U.S. Department of Health and Human Services, George Mason University, and the Italian Ministry of Public Health. Research reported in this publication included work performed in the mass spectrometry core supported by the National Cancer Institute of the National Institutes of Health under grant number P30CA033572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2020, The Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - Background: The lack of specificity and high degree of false positive and false negative rates when using mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that could identify the earliest stages of breast cancer and complement current mammographic screening approaches. Methods: We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls). Results: In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93). Conclusions: Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel improves the positive predictive value of mammography for breast cancer detection.
AB - Background: The lack of specificity and high degree of false positive and false negative rates when using mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that could identify the earliest stages of breast cancer and complement current mammographic screening approaches. Methods: We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls). Results: In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93). Conclusions: Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel improves the positive predictive value of mammography for breast cancer detection.
KW - Invasive ductal carcinoma
KW - Mammography
KW - Multiple reaction monitoring
KW - Nanoparticles
KW - Protein enrichment
KW - Serum
UR - http://www.scopus.com/inward/record.url?scp=85096968949&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096968949&partnerID=8YFLogxK
U2 - 10.1186/s13058-020-01373-9
DO - 10.1186/s13058-020-01373-9
M3 - Article
VL - 22
JO - Breast Cancer Research
JF - Breast Cancer Research
SN - 1465-5411
IS - 1
M1 - 135
ER -