TY - JOUR
T1 - Signaling through GP Ib-IX-V activates αIIbβ3 independently of other receptors
AU - Kasirer-Friede, Ana
AU - Cozzi, Maria Rita
AU - Mazzucato, Mario
AU - De Marco, Luigi
AU - Ruggeri, Zaverio M.
AU - Shattil, Sanford J.
PY - 2004/5/1
Y1 - 2004/5/1
N2 - Platelet adhesion to von Willebrand factor (VWF) activates αIIbβ3, a prerequisite for thrombus formation. However, it is unclear whether the primary VWF receptor, glycoprotein (GP) Ib-IX-V, mediates αIIbβ3 activation directly or through other signaling proteins physically associated with it (eg, FcR γ-chain), possibly with the contribution of other agonist receptors and of VWF signaling through αIIbβ3. To resolve this question, human and GP Ibα transgenic mouse platelets were plated on dimeric VWF A1 domain (dA1VWF), which engages only GP Ib-IX-V, in the presence of inhibitors of other agonist receptors. Platelet adhesion to dA1VWF induced Src kinase-dependent tyrosine phosphorylation of the FcR γ-chain and the adapter molecule, ADAP, and triggered intracellular Ca2+ oscillations and αIIbβ3 activation. Inhibition of Ca2+ oscillations with BAPTA-AM prevented αIIbβ3 activation but not tyrosine phosphorylation. Pharmacologic inhibition of protein kinase C (PKC) or phosphatidylinositol 3-kinase (PI 3-kinase) prevented αIIbβ3 activation but not Ca2+ oscillations. Inhibition of Src with 2 distinct compounds blocked all responses downstream of GP Ib-IX-V under static or flow conditions. However, dA1VWF-induced responses were reduced only slightly in GP Ibα transgenic platelets lacking FcR γ-chain. These data establish that GP Ib-IX-V itself can signal to activate αIIbβ3, through sequential actions of Src kinases, Ca2+ oscillations, and PI 3-kinase/PKC.
AB - Platelet adhesion to von Willebrand factor (VWF) activates αIIbβ3, a prerequisite for thrombus formation. However, it is unclear whether the primary VWF receptor, glycoprotein (GP) Ib-IX-V, mediates αIIbβ3 activation directly or through other signaling proteins physically associated with it (eg, FcR γ-chain), possibly with the contribution of other agonist receptors and of VWF signaling through αIIbβ3. To resolve this question, human and GP Ibα transgenic mouse platelets were plated on dimeric VWF A1 domain (dA1VWF), which engages only GP Ib-IX-V, in the presence of inhibitors of other agonist receptors. Platelet adhesion to dA1VWF induced Src kinase-dependent tyrosine phosphorylation of the FcR γ-chain and the adapter molecule, ADAP, and triggered intracellular Ca2+ oscillations and αIIbβ3 activation. Inhibition of Ca2+ oscillations with BAPTA-AM prevented αIIbβ3 activation but not tyrosine phosphorylation. Pharmacologic inhibition of protein kinase C (PKC) or phosphatidylinositol 3-kinase (PI 3-kinase) prevented αIIbβ3 activation but not Ca2+ oscillations. Inhibition of Src with 2 distinct compounds blocked all responses downstream of GP Ib-IX-V under static or flow conditions. However, dA1VWF-induced responses were reduced only slightly in GP Ibα transgenic platelets lacking FcR γ-chain. These data establish that GP Ib-IX-V itself can signal to activate αIIbβ3, through sequential actions of Src kinases, Ca2+ oscillations, and PI 3-kinase/PKC.
UR - http://www.scopus.com/inward/record.url?scp=1942425169&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1942425169&partnerID=8YFLogxK
U2 - 10.1182/blood-2003-10-3664
DO - 10.1182/blood-2003-10-3664
M3 - Article
C2 - 14726383
AN - SCOPUS:1942425169
VL - 103
SP - 3403
EP - 3411
JO - Blood
JF - Blood
SN - 0006-4971
IS - 9
ER -