Single adult rabbit and rat cardiac myocytes retain the Ca2+- and species-dependent systolic and diastolic contractile properties of intact muscle

M. C. Capogrossi, A. A. Kort, H. A. Spurgeon, E. G. Lakatta

Research output: Contribution to journalArticlepeer-review

Abstract

The systolic and diastolic properties of single myocytes and intact papillary muscles isolated from hearts of adult rats and rabbits were examined at 37°C over a range of stimulation frequencies and bathing [Ca2+](o) (Ca(o)). In both rabbit myocytes and intact muscles bathed in 1 mM Ca(o), increasing the frequency of stimulation from 6 to 120 min-1 resulted in a positive staircase of twitch performance. During stimulation at 2 min-1, twitch performance also increased with increases in Ca(o) up to 20 mM. In the absence of stimulation, both rabbit myocytes and muscles were completely quiescent in 2+-dependent spontaneous contractile waves. In contrast to rabbit preparations, intact rat papillary muscles exhibited SLIF in 1.0 mM Ca(o). Two populations of rat myocytes were observed in 1 mM Ca(o): ~85% of unstimulated cells exhibited low-frequency (3-4 min-1) spontaneous contractile waves, whereas 15%, during a 1-min observation period, were quiescent. In a given Ca(o), the contractile wave frequency in myocytes and SLIF in intact muscles were constant for long periods of time. In both intact rat muscles and myocytes with spontaneous waves, in 1 mM Ca(o), increasing the frequency of stimulation from 6 to 120 min-1 resulted, on the average, in a 65% reduction in steady state twitch amplitude. Of the rat myocytes that did not manifest waves, some had a positive, some had flat, and some had a negative staircase; the average steady state twitch amplitude of these cells during stimulation at 120 min-1 was 30% greater than that at 6 min-1. In contrast to rabbit preparations, twitch performance during stimulation at 2 min-1 saturated at 1.5 mM Ca(o) in both intact rat muscles and in the myocytes with spontaneous waves. We conclude that the widely divergent, Ca2+-dependent systolic and diastolic properties of intact rat and rabbit cardiac muscle are retained with a high degree of fidelity in the majority of viable single myocytes isolated from the myocardium of these species, and that these myocytes are thus a valid model for studies of Ca2+-dependent excitation-contraction mechanisms in the heart.

Original languageEnglish
Pages (from-to)589-613
Number of pages25
JournalJournal of General Physiology
Volume88
Issue number5
Publication statusPublished - 1986

ASJC Scopus subject areas

  • Physiology

Fingerprint Dive into the research topics of 'Single adult rabbit and rat cardiac myocytes retain the Ca2+- and species-dependent systolic and diastolic contractile properties of intact muscle'. Together they form a unique fingerprint.

Cite this