Spatial Integration of Somatosensory Inputs during Sensory-Motor Plasticity Phenomena Is Normal in Focal Hand Dystonia

C. Terranova, V. Rizzo, F. Morgante, R. Maggio, A. Calamuneri, G. Chillemi, P. Girlanda, A. Quartarone

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Background: Surround inhibition is a system that sharpens sensation by creating an inhibitory zone around the central core of activation. In the motor system, this mechanism probably contributes to the selection of voluntary movements, and it seems to be lost in dystonia. Objectives. To explore if sensory information is abnormally processed and integrated in focal hand dystonia (FHD) and if surround inhibition phenomena are operating during sensory-motor plasticity and somatosensory integration in normal humans and in patients with FHD. Methods. We looked at the MEP facilitation obtained after 5 Hz repetitive paired associative stimulation of median (PAS M), ulnar (PAS U), and median + ulnar nerve (PAS MU) stimulation in 8 normal subjects and 8 FHD. We evaluated the ratio MU/(M + U) ∗ 100 and the spatial and temporal somatosensory integration recording the somatosensory evoked potentials (SEPs) evoked by a dual nerve input. Results: FHD had two main abnormalities: first, the amount of facilitation was larger than normal subjects; second, the spatial specificity was lost. The MU/(M + U) ∗ 100 ratio was similar in healthy subjects and in FHD patients, and the somatosensory integration was normal in this subset of patients. Conclusions. The inhibitory integration of somatosensory inputs and the somatosensory inhibition are normal in patients with focal dystonia as well as lateral surrounding inhibition phenomena during sensory-motor plasticity in FHD.

Original languageEnglish
Number of pages1
JournalNeural Plasticity
Volume2018
DOIs
Publication statusPublished - Jan 1 2018

Fingerprint

Dystonic Disorders
Ulnar Nerve
Somatosensory Evoked Potentials
Dystonia
Median Nerve
Focal Task-Specific Dystonia
Healthy Volunteers
Inhibition (Psychology)

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology

Cite this

@article{742c32c6f7344c2e8cdc222913e82262,
title = "Spatial Integration of Somatosensory Inputs during Sensory-Motor Plasticity Phenomena Is Normal in Focal Hand Dystonia",
abstract = "Background: Surround inhibition is a system that sharpens sensation by creating an inhibitory zone around the central core of activation. In the motor system, this mechanism probably contributes to the selection of voluntary movements, and it seems to be lost in dystonia. Objectives. To explore if sensory information is abnormally processed and integrated in focal hand dystonia (FHD) and if surround inhibition phenomena are operating during sensory-motor plasticity and somatosensory integration in normal humans and in patients with FHD. Methods. We looked at the MEP facilitation obtained after 5 Hz repetitive paired associative stimulation of median (PAS M), ulnar (PAS U), and median + ulnar nerve (PAS MU) stimulation in 8 normal subjects and 8 FHD. We evaluated the ratio MU/(M + U) ∗ 100 and the spatial and temporal somatosensory integration recording the somatosensory evoked potentials (SEPs) evoked by a dual nerve input. Results: FHD had two main abnormalities: first, the amount of facilitation was larger than normal subjects; second, the spatial specificity was lost. The MU/(M + U) ∗ 100 ratio was similar in healthy subjects and in FHD patients, and the somatosensory integration was normal in this subset of patients. Conclusions. The inhibitory integration of somatosensory inputs and the somatosensory inhibition are normal in patients with focal dystonia as well as lateral surrounding inhibition phenomena during sensory-motor plasticity in FHD.",
author = "C. Terranova and V. Rizzo and F. Morgante and R. Maggio and A. Calamuneri and G. Chillemi and P. Girlanda and A. Quartarone",
year = "2018",
month = "1",
day = "1",
doi = "10.1155/2018/4135708",
language = "English",
volume = "2018",
journal = "Neural Plasticity",
issn = "2090-5904",
publisher = "Hindawi Publishing Corporation",

}

TY - JOUR

T1 - Spatial Integration of Somatosensory Inputs during Sensory-Motor Plasticity Phenomena Is Normal in Focal Hand Dystonia

AU - Terranova, C.

AU - Rizzo, V.

AU - Morgante, F.

AU - Maggio, R.

AU - Calamuneri, A.

AU - Chillemi, G.

AU - Girlanda, P.

AU - Quartarone, A.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Background: Surround inhibition is a system that sharpens sensation by creating an inhibitory zone around the central core of activation. In the motor system, this mechanism probably contributes to the selection of voluntary movements, and it seems to be lost in dystonia. Objectives. To explore if sensory information is abnormally processed and integrated in focal hand dystonia (FHD) and if surround inhibition phenomena are operating during sensory-motor plasticity and somatosensory integration in normal humans and in patients with FHD. Methods. We looked at the MEP facilitation obtained after 5 Hz repetitive paired associative stimulation of median (PAS M), ulnar (PAS U), and median + ulnar nerve (PAS MU) stimulation in 8 normal subjects and 8 FHD. We evaluated the ratio MU/(M + U) ∗ 100 and the spatial and temporal somatosensory integration recording the somatosensory evoked potentials (SEPs) evoked by a dual nerve input. Results: FHD had two main abnormalities: first, the amount of facilitation was larger than normal subjects; second, the spatial specificity was lost. The MU/(M + U) ∗ 100 ratio was similar in healthy subjects and in FHD patients, and the somatosensory integration was normal in this subset of patients. Conclusions. The inhibitory integration of somatosensory inputs and the somatosensory inhibition are normal in patients with focal dystonia as well as lateral surrounding inhibition phenomena during sensory-motor plasticity in FHD.

AB - Background: Surround inhibition is a system that sharpens sensation by creating an inhibitory zone around the central core of activation. In the motor system, this mechanism probably contributes to the selection of voluntary movements, and it seems to be lost in dystonia. Objectives. To explore if sensory information is abnormally processed and integrated in focal hand dystonia (FHD) and if surround inhibition phenomena are operating during sensory-motor plasticity and somatosensory integration in normal humans and in patients with FHD. Methods. We looked at the MEP facilitation obtained after 5 Hz repetitive paired associative stimulation of median (PAS M), ulnar (PAS U), and median + ulnar nerve (PAS MU) stimulation in 8 normal subjects and 8 FHD. We evaluated the ratio MU/(M + U) ∗ 100 and the spatial and temporal somatosensory integration recording the somatosensory evoked potentials (SEPs) evoked by a dual nerve input. Results: FHD had two main abnormalities: first, the amount of facilitation was larger than normal subjects; second, the spatial specificity was lost. The MU/(M + U) ∗ 100 ratio was similar in healthy subjects and in FHD patients, and the somatosensory integration was normal in this subset of patients. Conclusions. The inhibitory integration of somatosensory inputs and the somatosensory inhibition are normal in patients with focal dystonia as well as lateral surrounding inhibition phenomena during sensory-motor plasticity in FHD.

UR - http://www.scopus.com/inward/record.url?scp=85056257553&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056257553&partnerID=8YFLogxK

U2 - 10.1155/2018/4135708

DO - 10.1155/2018/4135708

M3 - Article

VL - 2018

JO - Neural Plasticity

JF - Neural Plasticity

SN - 2090-5904

ER -