Specificity of Insulin-Like Growth Factor I and Insulin on Shc Phosphorylation and Grb2 Recruitment in Caveolae

Claudia Biedi, Danilo Panetta, Daniela Segat, Renzo Cordera, Davide Maggi

Research output: Contribution to journalArticle

Abstract

Caveolae are lipid raft microdomains that regulate endocytosis and signal transduction. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates caveolin 1, supporting a role for these subcellular regions in the compartmentalization of IGF-I signaling. Src homology 2/α-collagen related protein (Shc) is the main mediator of IGF-I mitogenic action, coupling IGF-IR phosphorylation to Ras-MAPK activation. Here we show that IGF-I induces Shc tyrosine phosphorylation in the caveolae with a time course significantly different from that observed in the nonraft cellular fractions. In the same time, IGF-I recruits growth factor receptor bound protein 2 (Grb2) to caveolae and activates p42/p44 MAPKs in these microdomains. Src family kinases regulate IGF-I action through an Shc-dependent mechanism. In R-IGF-IRWT cells, IGF-I causes Fyn enrichment in the caveolae with a time course consistent with Shc phosphorylation and Grb2 recruitment in these regions. Finally, we have observed that after IGF-I stimulation, IGF-IR and Fyn colocalize in lipid raft caveolin 1-enriched microdomains. As insulin and IGF-I share common substrates, the effect of insulin on these cellular processes was measured. Here we show that insulin also induces Shc phosphorylation and Grb2 recruitment to caveolae, but with a significantly different time course compared with IGF-I. Our results suggest that 1) IGF-I causes the colocalization of signaling proteins in caveolae through a phosphorylation-regulated mechanism; and 2) the time course of phosphorylation and recruitment of substrates in caveolae by insulin receptor and IGF-IR could determine the specific actions of these receptors.

Original languageEnglish
Pages (from-to)5497-5503
Number of pages7
JournalEndocrinology
Volume144
Issue number12
DOIs
Publication statusPublished - Dec 2003

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism

Fingerprint Dive into the research topics of 'Specificity of Insulin-Like Growth Factor I and Insulin on Shc Phosphorylation and Grb2 Recruitment in Caveolae'. Together they form a unique fingerprint.

  • Cite this