TY - JOUR
T1 - Sphingosine 1-phosphate mediates proliferation and survival of mesoangioblasts
AU - Donati, Chiara
AU - Cencetti, Francesca
AU - Nincheri, Paola
AU - Bernacchioni, Caterina
AU - Brunelli, Silvia
AU - Clementi, Emilio
AU - Cossu, Giulio
AU - Bruni, Paola
PY - 2007/7
Y1 - 2007/7
N2 - Mesoangioblasts are stem cells capable of differentiating in various mesodermal tissues and are presently regarded as suitable candidates for cell therapy of muscle degenerative diseases, as well as myocardial infarction. The enhancement of their proliferation and survival after injection in vivo could greatly improve their ability to repopulate damaged tissues. In this study, we show that the bioactive sphingolipid sphingosine 1-phosphate (S1P) regulates critical functions of mesoangioblast cell biology. S1P evoked a full mitogenic response in mesoangioblasts, measured by labeled thymidine incorporation and cell counting. Moreover, S1P strongly counteracted the apoptotic process triggered by stimuli as diverse as serum deprivation, C2-ceramide treatment, or staurosporine treatment, as assessed by cell counting, as well as histone-associated fragments and caspase-3 activity determinations. S1P acts both as an intracellular messenger and through specific membrane receptors. Realtime polymerase chain reaction analysis revealed that mesoangioblasts express the S1P-specific receptor S1P3 and, to a minor extent, S1P1 and S1P2. By using S1P receptor subtype-specific agonists and antagonists, we found that the proliferative response to S1P was mediated mainly by S1P2. By contrast, the antiapoptotic effect did not implicate S1P receptors. These findings demonstrate an important role of S1P in mesoangioblast proliferation and survival and indicate that targeting modulation of S1P-dependent signaling pathways may be used to improve the efficiency of muscle repair by these cells.
AB - Mesoangioblasts are stem cells capable of differentiating in various mesodermal tissues and are presently regarded as suitable candidates for cell therapy of muscle degenerative diseases, as well as myocardial infarction. The enhancement of their proliferation and survival after injection in vivo could greatly improve their ability to repopulate damaged tissues. In this study, we show that the bioactive sphingolipid sphingosine 1-phosphate (S1P) regulates critical functions of mesoangioblast cell biology. S1P evoked a full mitogenic response in mesoangioblasts, measured by labeled thymidine incorporation and cell counting. Moreover, S1P strongly counteracted the apoptotic process triggered by stimuli as diverse as serum deprivation, C2-ceramide treatment, or staurosporine treatment, as assessed by cell counting, as well as histone-associated fragments and caspase-3 activity determinations. S1P acts both as an intracellular messenger and through specific membrane receptors. Realtime polymerase chain reaction analysis revealed that mesoangioblasts express the S1P-specific receptor S1P3 and, to a minor extent, S1P1 and S1P2. By using S1P receptor subtype-specific agonists and antagonists, we found that the proliferative response to S1P was mediated mainly by S1P2. By contrast, the antiapoptotic effect did not implicate S1P receptors. These findings demonstrate an important role of S1P in mesoangioblast proliferation and survival and indicate that targeting modulation of S1P-dependent signaling pathways may be used to improve the efficiency of muscle repair by these cells.
KW - Apoptosis
KW - Cell signaling
KW - Cellular proliferation
KW - Mammalian stem cells
KW - Sphingosine 1-phosphate
UR - http://www.scopus.com/inward/record.url?scp=34547148609&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547148609&partnerID=8YFLogxK
U2 - 10.1634/stemcells.2006-0725
DO - 10.1634/stemcells.2006-0725
M3 - Article
C2 - 17464089
AN - SCOPUS:34547148609
VL - 25
SP - 1713
EP - 1719
JO - Stem Cells
JF - Stem Cells
SN - 1066-5099
IS - 7
ER -