TY - JOUR
T1 - Spinal or cortical direct current stimulation
T2 - Which is the best? Evidence from apraxia of speech in post-stroke aphasia
AU - Pisano, Francesca
AU - Caltagirone, Carlo
AU - Incoccia, Chiara
AU - Marangolo, Paola
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - To date, new advances in technology have already shown the effectiveness of non-invasive brain stimulation and, in particular, of transcranial direct current stimulation (tDCS), in enhancing language recovery in post-stroke aphasia. More recently, it has been suggested that the stimulation over the spinal cord improves the production of words associated to sensorimotor schemata, such as action verbs. Here, for the first time, we present evidence that transpinal direct current stimulation (tsDCS) combined with a language training is efficacious for the recovery from speech apraxia, a motor speech disorder which might co-occur with aphasia. In a randomized-double blind experiment, ten aphasics underwent five days of tsDCS with concomitant treatment for their articulatory deficits in two different conditions: anodal and sham. In all patients, language measures were collected before (T0), at the end (T5) and one week after the end of treatment (F/U). Results showed that only after anodal tsDCS patients exhibited a better accuracy in repeating the treated items. Moreover, these effects persisted at F/U and generalized to other oral language tasks (i.e. picture description, noun and verb naming, word repetition and reading). A further analysis, which compared the tsDCS results with those collected in a matched group of patients who underwent the same language treatment but combined with tDCS, revealed no differences between the two groups. Given the persistency and severity of articulatory deficits in aphasia and the ease of use of tsDCS, we believe that spinal stimulation might result a new innovative approach for language rehabilitation.
AB - To date, new advances in technology have already shown the effectiveness of non-invasive brain stimulation and, in particular, of transcranial direct current stimulation (tDCS), in enhancing language recovery in post-stroke aphasia. More recently, it has been suggested that the stimulation over the spinal cord improves the production of words associated to sensorimotor schemata, such as action verbs. Here, for the first time, we present evidence that transpinal direct current stimulation (tsDCS) combined with a language training is efficacious for the recovery from speech apraxia, a motor speech disorder which might co-occur with aphasia. In a randomized-double blind experiment, ten aphasics underwent five days of tsDCS with concomitant treatment for their articulatory deficits in two different conditions: anodal and sham. In all patients, language measures were collected before (T0), at the end (T5) and one week after the end of treatment (F/U). Results showed that only after anodal tsDCS patients exhibited a better accuracy in repeating the treated items. Moreover, these effects persisted at F/U and generalized to other oral language tasks (i.e. picture description, noun and verb naming, word repetition and reading). A further analysis, which compared the tsDCS results with those collected in a matched group of patients who underwent the same language treatment but combined with tDCS, revealed no differences between the two groups. Given the persistency and severity of articulatory deficits in aphasia and the ease of use of tsDCS, we believe that spinal stimulation might result a new innovative approach for language rehabilitation.
KW - Apraxia of speech
KW - Language recovery
KW - Neuromodulation
KW - Transpinal stimulation
UR - http://www.scopus.com/inward/record.url?scp=85096962348&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096962348&partnerID=8YFLogxK
U2 - 10.1016/j.bbr.2020.113019
DO - 10.1016/j.bbr.2020.113019
M3 - Article
C2 - 33207242
AN - SCOPUS:85096962348
VL - 399
JO - Behavioural Brain Research
JF - Behavioural Brain Research
SN - 0166-4328
M1 - 113019
ER -