Spread of Enterobacter cloacae carrying blaNDM-1, blaCTX-M-15, blaSHV-12 and plasmid-mediated quinolone resistance genes in a surgical intensive care unit in Croatia

N Petrosillo, M. Vranić-Ladavac, C. Feudi, L Villa, D. Fortini, N. Barišić, B Bedenić, R. Ladavac, S D'Arezzo, A. Tambić Andrašević, A Capone

Research output: Contribution to journalArticle

Abstract

The objective of this study was to describe a hospital cluster of NDM-1-producing Enterobacter cloacae infections observed in the surgical intensive care unit (ICU) of a tertiary-care hospital at Pula, Croatia. NDM-1-producing E. cloacae strains isolated from clinical samples were screened by PCR for the presence of carbapenemases. Genetic relatedness of NDM-1-producing E. cloacae strains was determined by multilocus sequence typing (MLST). During the period October 2013 to April 2014, four patients, with overlapping hospital stay in the surgical ICU, developed severe infections caused by E. cloacae demonstrated to produce carbapenemases. According to MLST, all strains belonged to ST133 and were positive by PCR for the blaNDM-1 carbapenemase gene, for blaCTX-M-15 and blaSHV-12 extended-spectrum β-lactamase (ESBL) genes, and for blaTEM-1 and blaOXA-1 narrow-spectrum β-lactamase genes. They were negative for other carbapenemases genes including blaOXA-48, blaVIM and blaKPC as well as for AmpC and the armA and rmtB aminoglycoside resistance genes. All strains were positive for the HI2 replicon, suggesting that an IncHI2 plasmid is likely the plasmid carrying the blaNDM-1 gene. Infection control measures were implemented after the first case although they were not effective in avoiding spread of this organism to other patients in the surgical ICU. In conclusion, the evolving epidemiology of NDM-producing micro-organisms and the interspecies diffusion of this resistance mechanism to emerging pathogens such as E. cloacae necessitate the setting up of strong and urgent joint measures to control the spread of NDM carbapenemase especially in the ICU setting.

Original languageEnglish
Pages (from-to)44-8
Number of pages5
JournalJournal of Global Antimicrobial Resistance
Volume4
DOIs
Publication statusPublished - Mar 2016

    Fingerprint

Keywords

  • Journal Article

Cite this