Structural properties of plant and mammalian lipoxygenases. Temperature-dependent conformational alterations and membrane binding ability

Giampiero Mei, Almerinda Di Venere, Eleonora Nicolai, Clotilde B. Angelucci, Igor Ivanov, Annalaura Sabatucci, Enrico Dainese, Hartmut Kuhn, Mauro Maccarrone

Research output: Contribution to journalArticle

Abstract

Lipoxygenases form a heterogeneous family of lipid peroxidizing enzymes, which have been implicated in the synthesis of inflammatory mediators, in cell development and in the pathogenesis of various diseases with major health and political relevance (atherosclerosis, osteoporosis). The crystal structures of various lipoxygenase-isoforms have been reported, and X-ray coordinates for enzyme-ligand complexes are also available. Although the 3D-structures of plant and animal lipoxygenase-isoforms are very similar, recent small-angle X-ray scattering data suggested a higher degree of motional flexibility of mammalian isozymes in aqueous solutions. To explore the molecular basis for these differences we performed dynamic fluorescence measurements that allowed us to study temperature-induced conformational changes arising from three-dimensional fluctuations of the protein matrix. For this purpose, we first investigated the impact of elevated temperature on activity, secondary structure, tertiary structure dynamics and conformational alterations. Applying fluorescence resonance energy transfer we also tested the membrane binding properties of the two lipoxygenase-isoforms, and compared their binding parameters. Taken together, our results indicate that the rabbit 12/15-lipoxygenase is more susceptible to temperature-induced structural alterations than the soybean enzyme. Moreover, the rabbit enzyme exhibits a higher degree of conformational flexibility of the entire protein molecule (global flexibility) and offers the possibility of augmented substrate movement at the catalytic center (local flexibility).

Original languageEnglish
Pages (from-to)9234-9242
Number of pages9
JournalBiochemistry
Volume47
Issue number35
DOIs
Publication statusPublished - Sep 2 2008

Fingerprint

Lipoxygenases
Lipoxygenase
Structural properties
Membranes
Protein Isoforms
Temperature
Enzymes
X-Rays
Rabbits
Animal Structures
Plant Structures
Fluorescence Resonance Energy Transfer
X ray scattering
Soybeans
Isoenzymes
Osteoporosis
Atherosclerosis
Animals
Proteins
Crystal structure

ASJC Scopus subject areas

  • Biochemistry

Cite this

Structural properties of plant and mammalian lipoxygenases. Temperature-dependent conformational alterations and membrane binding ability. / Mei, Giampiero; Di Venere, Almerinda; Nicolai, Eleonora; Angelucci, Clotilde B.; Ivanov, Igor; Sabatucci, Annalaura; Dainese, Enrico; Kuhn, Hartmut; Maccarrone, Mauro.

In: Biochemistry, Vol. 47, No. 35, 02.09.2008, p. 9234-9242.

Research output: Contribution to journalArticle

Mei, G, Di Venere, A, Nicolai, E, Angelucci, CB, Ivanov, I, Sabatucci, A, Dainese, E, Kuhn, H & Maccarrone, M 2008, 'Structural properties of plant and mammalian lipoxygenases. Temperature-dependent conformational alterations and membrane binding ability', Biochemistry, vol. 47, no. 35, pp. 9234-9242. https://doi.org/10.1021/bi800638v
Mei, Giampiero ; Di Venere, Almerinda ; Nicolai, Eleonora ; Angelucci, Clotilde B. ; Ivanov, Igor ; Sabatucci, Annalaura ; Dainese, Enrico ; Kuhn, Hartmut ; Maccarrone, Mauro. / Structural properties of plant and mammalian lipoxygenases. Temperature-dependent conformational alterations and membrane binding ability. In: Biochemistry. 2008 ; Vol. 47, No. 35. pp. 9234-9242.
@article{3731fbd121de4142ac80d157e045bb65,
title = "Structural properties of plant and mammalian lipoxygenases. Temperature-dependent conformational alterations and membrane binding ability",
abstract = "Lipoxygenases form a heterogeneous family of lipid peroxidizing enzymes, which have been implicated in the synthesis of inflammatory mediators, in cell development and in the pathogenesis of various diseases with major health and political relevance (atherosclerosis, osteoporosis). The crystal structures of various lipoxygenase-isoforms have been reported, and X-ray coordinates for enzyme-ligand complexes are also available. Although the 3D-structures of plant and animal lipoxygenase-isoforms are very similar, recent small-angle X-ray scattering data suggested a higher degree of motional flexibility of mammalian isozymes in aqueous solutions. To explore the molecular basis for these differences we performed dynamic fluorescence measurements that allowed us to study temperature-induced conformational changes arising from three-dimensional fluctuations of the protein matrix. For this purpose, we first investigated the impact of elevated temperature on activity, secondary structure, tertiary structure dynamics and conformational alterations. Applying fluorescence resonance energy transfer we also tested the membrane binding properties of the two lipoxygenase-isoforms, and compared their binding parameters. Taken together, our results indicate that the rabbit 12/15-lipoxygenase is more susceptible to temperature-induced structural alterations than the soybean enzyme. Moreover, the rabbit enzyme exhibits a higher degree of conformational flexibility of the entire protein molecule (global flexibility) and offers the possibility of augmented substrate movement at the catalytic center (local flexibility).",
author = "Giampiero Mei and {Di Venere}, Almerinda and Eleonora Nicolai and Angelucci, {Clotilde B.} and Igor Ivanov and Annalaura Sabatucci and Enrico Dainese and Hartmut Kuhn and Mauro Maccarrone",
year = "2008",
month = "9",
day = "2",
doi = "10.1021/bi800638v",
language = "English",
volume = "47",
pages = "9234--9242",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "35",

}

TY - JOUR

T1 - Structural properties of plant and mammalian lipoxygenases. Temperature-dependent conformational alterations and membrane binding ability

AU - Mei, Giampiero

AU - Di Venere, Almerinda

AU - Nicolai, Eleonora

AU - Angelucci, Clotilde B.

AU - Ivanov, Igor

AU - Sabatucci, Annalaura

AU - Dainese, Enrico

AU - Kuhn, Hartmut

AU - Maccarrone, Mauro

PY - 2008/9/2

Y1 - 2008/9/2

N2 - Lipoxygenases form a heterogeneous family of lipid peroxidizing enzymes, which have been implicated in the synthesis of inflammatory mediators, in cell development and in the pathogenesis of various diseases with major health and political relevance (atherosclerosis, osteoporosis). The crystal structures of various lipoxygenase-isoforms have been reported, and X-ray coordinates for enzyme-ligand complexes are also available. Although the 3D-structures of plant and animal lipoxygenase-isoforms are very similar, recent small-angle X-ray scattering data suggested a higher degree of motional flexibility of mammalian isozymes in aqueous solutions. To explore the molecular basis for these differences we performed dynamic fluorescence measurements that allowed us to study temperature-induced conformational changes arising from three-dimensional fluctuations of the protein matrix. For this purpose, we first investigated the impact of elevated temperature on activity, secondary structure, tertiary structure dynamics and conformational alterations. Applying fluorescence resonance energy transfer we also tested the membrane binding properties of the two lipoxygenase-isoforms, and compared their binding parameters. Taken together, our results indicate that the rabbit 12/15-lipoxygenase is more susceptible to temperature-induced structural alterations than the soybean enzyme. Moreover, the rabbit enzyme exhibits a higher degree of conformational flexibility of the entire protein molecule (global flexibility) and offers the possibility of augmented substrate movement at the catalytic center (local flexibility).

AB - Lipoxygenases form a heterogeneous family of lipid peroxidizing enzymes, which have been implicated in the synthesis of inflammatory mediators, in cell development and in the pathogenesis of various diseases with major health and political relevance (atherosclerosis, osteoporosis). The crystal structures of various lipoxygenase-isoforms have been reported, and X-ray coordinates for enzyme-ligand complexes are also available. Although the 3D-structures of plant and animal lipoxygenase-isoforms are very similar, recent small-angle X-ray scattering data suggested a higher degree of motional flexibility of mammalian isozymes in aqueous solutions. To explore the molecular basis for these differences we performed dynamic fluorescence measurements that allowed us to study temperature-induced conformational changes arising from three-dimensional fluctuations of the protein matrix. For this purpose, we first investigated the impact of elevated temperature on activity, secondary structure, tertiary structure dynamics and conformational alterations. Applying fluorescence resonance energy transfer we also tested the membrane binding properties of the two lipoxygenase-isoforms, and compared their binding parameters. Taken together, our results indicate that the rabbit 12/15-lipoxygenase is more susceptible to temperature-induced structural alterations than the soybean enzyme. Moreover, the rabbit enzyme exhibits a higher degree of conformational flexibility of the entire protein molecule (global flexibility) and offers the possibility of augmented substrate movement at the catalytic center (local flexibility).

UR - http://www.scopus.com/inward/record.url?scp=50849087043&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=50849087043&partnerID=8YFLogxK

U2 - 10.1021/bi800638v

DO - 10.1021/bi800638v

M3 - Article

C2 - 18693758

AN - SCOPUS:50849087043

VL - 47

SP - 9234

EP - 9242

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 35

ER -