Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease

L. Rossi, S. Marceglia, G. Foffani, F. Cogiamanian, F. Tamma, P. Rampini, S. Barbieri, F. Bracchi, A. Priori

Research output: Contribution to journalArticlepeer-review

Abstract

How deep brain stimulation (DBS) acts and how the brain responds to it remains unclear. To investigate the mechanisms involved, we analyzed changes in local field potentials from the subthalamic area (STN-LFPs) recorded through the deep brain macroelectrode during monopolar DBS of the subthalamic nucleus area (STN-DBS) in a group of eight patients (16 nuclei) with idiopathic Parkinson's disease. Monopolar STN-DBS was delivered through contact 1 and differential LFP recordings were acquired between contacts 0 and 2. The stimulating contact was 0.5 mm away from each recording contact. The power spectral analysis of STN-LFPs showed that during ongoing STN-DBS whereas the power of beta oscillations (8-20 Hz) and high beta oscillations (21-40 Hz) remained unchanged, the power of low-frequency oscillations (1-7 Hz) significantly increased (baseline = 0.37 ± 0.22; during DBS = 7.07 ± 15.10, p = 0.0003). Despite comparable low-frequency baseline power with and without levodopa, the increase in low-frequency oscillations during STN-DBS was over boosted by pretreatment with levodopa. The low-frequency power increase in STN-LFPs during ongoing STN-DBS could reflect changes induced at basal ganglia network level similar to those elicited by levodopa. In addition, the correlation between the heart beat and the low-frequency oscillations suggests that part of the low-frequency power increase during STN-DBS arises from polarization phenomena around the stimulating electrode. Local polarization might in turn also help to normalize STN hyperactivity in Parkinson's disease.

Original languageEnglish
Pages (from-to)512-521
Number of pages10
JournalBrain Research Bulletin
Volume76
Issue number5
DOIs
Publication statusPublished - Jul 30 2008

Keywords

  • Deep brain stimulation
  • Electrical polarization
  • Local field potentials
  • Parkinson's disease
  • Subthalamic nucleus

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease'. Together they form a unique fingerprint.

Cite this