Abstract
Original language | English |
---|---|
Article number | 114607 |
Number of pages | 14 |
Journal | Polyhedron |
Volume | 186 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Allyl palladium(II) complexes
- Anticancer activity
- Crystal structure
- N-Heterocyclic carbenes
- NMR spectroscopy
Access to Document
Fingerprint
Dive into the research topics of 'Synthesis and comparative study of the anticancer activity of η3-allyl palladium(II) complexes bearing N-heterocyclic carbenes as ancillary ligands'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Synthesis and comparative study of the anticancer activity of η3-allyl palladium(II) complexes bearing N-heterocyclic carbenes as ancillary ligands. / Scattolin, T.; Bortolamiol, E.; Caligiuri, I. et al.
In: Polyhedron, Vol. 186, 114607, 2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Synthesis and comparative study of the anticancer activity of η3-allyl palladium(II) complexes bearing N-heterocyclic carbenes as ancillary ligands
AU - Scattolin, T.
AU - Bortolamiol, E.
AU - Caligiuri, I.
AU - Rizzolio, F.
AU - Demitri, N.
AU - Visentin, F.
N1 - Cited By :3 Export Date: 19 February 2021 CODEN: PLYHD Correspondence Address: Visentin, F.; Dipartimento di Scienze Molecolari e Nanosistemi, Campus Scientifico Via Torino 155, Italy; email: fvise@unive.it References: Arduengo, A.J., Harlow, R.L., Kline, M., (1991) J. Am. Chem. Soc., 113, p. 361; Hopkinson, N., Richter, C., Schedler, M., Glorius, F., (2014) Nature, 510, p. 485; Huynh, H.V., (2018) Chem. Rev., 118, p. 9457; Hermann, W.A., (2002) Angew. Chem., Int. Ed., 41, p. 1290; Prokopchuck, E.M., Puddhephatt, R.J., (2003) Organometallics, 22, p. 563; Nolan, P.S., N-Heterocyclic Carbene in Synthesis (2006), Wiley-VCH Weinheim; Gonzalez, S.D., Marion, N., Nolan, P.S., (2009) Chem. Rev., 109 (8), p. 3612; Hermann, W.A., Goossen, L.J., Spiegler, M., (1998) Organometallics, 17, p. 2162; Doutwhite, R.E., Green, M., Silcock, P.J., Gomes, P.T., (2002) J. Chem. Soc., Dalton Trans., p. 1386; Nielsen, D.J., Cavell, K.J., Skelton, B.W., White, A.H., (2002) Inorg. Chim. Acta, 327, p. 116; McGuinness, D.S., Mueller, W., Wasserscheid, P., Cavell, K.J., Skelton, B.W., White, A.H., (2002) Organometallics, 21, p. 175; Droge, T., Glorius, F., (2010) Angew. Chem., Int. Ed., 49, p. 6940; Han, Y., Huynh, H.V., Tan, G.K., (2007) Organometallics, 26, p. 6581; Tulloch, A.A.D., Danopoulos, A.A., Winston, S., Khleinhenz, S., Eastham, G., (2000) J. Chem. Soc., Dalton Trans., p. 4499; Tulloch, A.A.D., Danopoulos, S., Khleinhenz, S., Light, M.E., Hursthouse, M.B., Eastham, G., (2000) Organometallics, 20, p. 2027; Tulloch, A.A.D., Winston, S., Danopoulos, A.A., Eastham, G., Hursthouse, M.B., (2003) J. Chem. Soc., Dalton Trans., p. 699; Bonnet, L.G., Doutwhite, R.E., Kariuki, B.M., (2003) Organometallics, 22, p. 4187; Frøseth, M., Dhindsa, A., Røise, H., Tilset, M., (2003) J. Chem. Soc., Dalton Trans., p. 4516; Danopoulos, A.A., Gelbrich, T., Hursthouse, M.B., Winston, S., (2002) Chem. Commun., p. 482; Waltman, A.W., Grubbs, R.H., (2004) Organometallics, 23, p. 3105; Seo, H., Park, H., Kim, B.Y., Lee, J.H., Chung, Y.K., (2003) Organometallics, 22, p. 3105; Mata, J.A., Poyatos, M., Peris, E., (2007) Coord. Chem. Rev., 251, p. 841; Poyatos, M., Mata, J.A., Peris, E., (2009) Chem. Rev., 109, p. 3677; Riederer, S.K.U., Gigler, P., Högerl, M.P., Herdtweck, E., Bechlars, B., Herrmann, W.A., Kühn, F.E., (2010) Organometallics, 29, p. 5681; Gardiner, M.G., McGuinness, D.S., Vanston, C.R., (2017) Dalton Trans., 46, p. 3051; Herrmann, W.A., Schwarz, J., Gardiner, M.G., (1999) Organometallics, 18, p. 4082; Ahrens, S., Zeller, A., Taige, M., Strassner, T., (2006) Organometallics, 25, p. 5409; Herrmann, W.A., Reisinger, C.P., Spiegler, M., (1998) J. Organomet. Chem., 557, p. 93; Weskamp, T., Böhm, V.P.W., Herrmann, W.A., (2000) J. Organomet. Chem., 600, p. 12; Heckenroth, M., Neels, A., Stoeckli-Evans, H., Albrecht, M., (2006) Inorg. Chim. Acta, 359, p. 1929; Lee, H.M., Lu, C.Y., Chen, C.Y., Chen, W.L., Lin, H.C., Chiu, P.L., Cheng, P.Y., (2004) Tetrahedron, 27, p. 5807; Scattolin, T., Caligiuri, I., Mouawad, N., El Boustani, M., Demitri, N., Rizzolio, F., Visentin, F., (2019) Eur. J. Med. Chem., 179, p. 325; Scattolin, T., Giust, S., Bergamini, P., Caligiuri, I., Canovese, L., Demitri, N., Gambari, R., Visentin, F., (2019) Appl. Organomet. Chem., 33; Sluijter, S.N., Warsink, S., Lutzc, M., Elsevier, C.J., (2013) Dalton Trans., 42, p. 7365; Scattolin, T., Canovese, L., Visentin, F., Paganelli, S., Canton, P., Demitri, N., (2018) Appl. Organomet. Chem., 32; Scattolin, T., Canovese, L., Visentin, F., Santo, C., Demitri, N., (2018) Polyhedron, 154, p. 382; Van Belzen, R., Elsevier, C.J., Didieu, A., Veldman, N., Speck, A.L., (2003) Organometallics, 22, p. 722; Scattolin, T., Visentin, F., Santo, C., Bertolasi, V., Canovese, L., (2016) Dalton Trans., 45, p. 11560; Canovese, L., Visentin, F., Scattolin, T., Santo, C., Bertolasi, V., (2016) J. Organomet. Chem., 808, p. 48; Canovese, L., Visentin, F., Scattolin, T., Santo, C., Bertolasi, V., (2016) Polyhedron, 113, p. 25; Canovese, L., Visentin, F., Scattolin, T., Santo, C., Bertolasi, V., (2015) Dalton Trans., 44, p. 15049; Canovese, L., Santo, C., Scattolin, T., Visentin, F., Bertolasi, V., (2015) J. Organomet. Chem., 794, p. 288; Visentin, F., Santo, C., Scattolin, T., Demitri, N., Canovese, L., (2017) Dalton Trans., 46, p. 10399; Scattolin, T., Moro, G., Rizzolio, F., Santo, C., Moretto, L.M., Visentin, F., (2019) ChemistrySelect, 4, p. 10911; Viciu, M.S., Germaneau, R.F., Fernandez, O.N., Stevens, E.D., Nolan, S.P., (2002) Organometallics, 21 (25), p. 5470; Zinser, C.M., Nahra, F., Brill, M., Meadows, R.E., Cordes, D.B., Slawin, A.M.Z., Nolan, S.P., Cazin, C.S.J., (2017) Chem. Commun., 53, p. 7990; Trost, B.M., (2002) Acc. Chem. Res., 35, p. 695; Tsuji, J., Palladium Reagent and Catalysts (1995), John Wiley and sons; Canovese, L., Visentin, F., Uguagliati, P., Chessa, G., Pesce, A., (1998) J. Organomet. Chem, 566, p. 61; Scattolin, T., Caligiuri, I., Canovese, L., Demitri, N., Gambari, R., Lampronti, I., Rizzolio, F., Visentin, F., (2018) Dalton Trans., 47, p. 13616; Williams, D.J., Vanderveer, D., Jones, R.L., Menaldino, D.S., (1989) Inorg. Chim. Acta, 165, p. 173; Pugh, D., Wells, N.J., Evans, D.J., Danopoulos, A.A., (2009) Dalton Trans., 35, p. 7189; Canovese, L., Visentin, F., Santo, C., Chessa, G., Uguagliati, P., (2001) Polyhedron, 20, p. 3171; Crociani, B., Antonaroli, S., Bandoli, G., Canovese, L., Visentin, F., Uguagliati, P., (1999) Organometallics, 18 (7), p. 1137; Barthes, C., Bijani, C., Lugan, N., Canac, Y., (2017) Organometallics, 37, p. 673; Liu, Y.-Z., Wang, J., Wang, G.-F., Chen, L., Chen, X.-T., Xue, Z.-L., (2014) Polyhedron, 83, p. 44; Paul, S., Schweizer, W.B., Rugg, G., Senn, H.M., Gilmour, R., (2013) Tetrahedron, 69, p. 5647; Canovese, L., Visentin, F., Levi, C., Santo, C., Bertolasi, V., (2013) J. Organomet. Chem., 732, p. 27; Bohm, V.P.W., Gstottmayr, C.W.K., Weskamp, T., Herrmann, W.A., (2000) J. Organomet. Chem., 595, p. 186; Viciu, M.S., Navarro, O., Germaneau, R.F., Kelly, R.A., III, Sommer, W., Marion, N., Stevens, E.D., Nolan, S.P., (2004) Organometallics, 23, p. 1629; Köpf-Maier, P., Köpf, H., Neuse, E.W., (1984) Angew. Chem. Int. Ed., 23, p. 456; Krogstad, D.A., Cho, J., DeBoer, A.J., Klitzke, J.A., Sanow, W.R., Williams, H.A., Halfen, J.A., (2006) Inorg. Chim. Acta, 359, p. 136; Vergara, E., Miranda, S., Mohr, F., Cerrada, E., Tiekink, E.R.T., Romero, P., Mendía, A., Laguna, M., (2007) Eur. J. Inorg. Chem., p. 2926; Spencer, J., Casini, A., Zava, O., Rathnam, R.P., Velhanda, S.K., Pfeffer, M., Callear, S.K., Dyson, P., (2009) Dalton Trans., p. 10731; Lasri, J., Fernández Rodríguez, M.J., Guedes da Silva, M.F.C., Smolenski, P., Kopylovich, M.N., Fraústo da Silva, J.J.R., Pombeiro, A.J.L., (2011) J. Organomet. Chem., 696, p. 3513; Carreira, M., Calvo-Sanjuan, R., Sanauí, M., Marzo, I., Contel, M., (2012) Organometallics, 31, p. 5772; Guerrero, E., Miranda, S., Luüttenberg, S., Froöhlich, N., Koenen, J., Mohr, F., Cerrada, E., Mendía, A., (2013) Inorg. Chem., 52, p. 6635; Braddock-Wilking, J., Acharya, S., Rath, N.P., (2014) Polyhedron, 79, p. 16; Ferretti, V., Fogagnolo, M., Marchi, A., Marvelli, L., Sforza, F., Bergamini, P., (2014) Inorg. Chem., 53 (10), p. 4881; Canovese, L., Visentin, F., Levi, C., Dolmella, A., (2011) Dalton Trans., 40, p. 966; Canovese, L., Visentin, F., Levi, C., Santo, C., Bertolasi, V., (2011) Inorg. Chim. Acta, 378, p. 239; Canovese, L., Visentin, F., Scattolin, T., Santo, C., Bertolasi, V., (2016) Polyhedron, 119, p. 377; Visentin, F., Togni, A., (2007) Organometallics, 26, p. 3746; Canovese, L., Visentin, F., Santo, C., Chessa, G., Bertolasi, V., (2010) Organometallics, 29, p. 3027; Wanniarachchi, Y.A., Khan, M.A., Slaughter, L.M., (2004) Organometallics, 23, p. 5881; Cheng, Y., Lu, X.-Y., Xu, H.-J., Li, Y.-Z., Chen, X.-T., Xue, Z.-L., (2010) Inorg. Chim. Acta, 363, p. 430; Canovese, L., Visentin, F., Scattolin, T., Santo, C., Bertolasi, V., (2018) Polyhedron, 144, p. 131; De Fremont, P., Scott, N.M., Stevens, E.D., Ramnial, T., Lightbody, O.C., MacDonald, C.L.B., Clyburne, J.A.C., Nolan, S.P., (2005) Organometallics, 24, p. 6301; Canovese, L., Visentin, F., Levi, C., Dolmella, A., (2011) Dalton Trans., 40, p. 966; Canovese, L., Visentin, F., Biz, C., Scattolin, T., Santo, C., Bertolasi, V., (2015) J. Organomet. Chem., 786, p. 21; Cramer, C.J., Essentials of Computational Chemistry (2004), 2nd ed. Wiley Chichester; Jensen, F., Introduction to Computational Chemistry (2007), 2nd ed. Wiley Chichester; Zhao, Y., Truhlar, D.G., (2008) Acc. Chem. Res., 41, p. 157; Zhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215; Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, p. 270; Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, p. 299; Roy, L.E., Hay, P.J., Martin, R.L., (2008) J. Chem. Theory Comput., 4, p. 1029; Check, C.E., Faust, T.O., Bailey, J.M., Wright, B.J., Gilbert, T.M., Sunderlin, L.S., (2001) J. Phys. Chem. A, 105, p. 8111; Barone, V., Cossi, M., Tomasi, J., (1997) J. Chem. Phys., 107, p. 3210; Barone, V., Cossi, M., (1998) J. Phys. Chem. A, 102, p. 1995; Lausi, A., Polentarutti, M., Onesti, S., Plaisier, J.R., Busetto, E., Bais, G., Barba, L., Paolucci, G., (2015) Eur. Phys. J. Plus, 130 (43), p. 1; Kabsch, W., XDS (2010) Acta Crystallogr. Sect. D, 66 (2), p. 125; Sheldrick, G.M., (2015) Acta Crystallogr. Sect. A, 71, p. 3; Sheldrick, G.M., (2015) Acta Crystallogr. Sect. C, 71, p. 3; Emsley, P., Lohkamp, B., Scott, W., Cowtan, K., (2010) Acta Crystallogr. Sect. D, 66, p. 486; Farrugia, L., (2012) J. Appl. Crystallogr., 45 (4), p. 849; Schrodinger, L., (2015), http://www.pymol.org, The PyMOL Molecular Graphics SystemUR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085757792&doi=10.1016%2fj.poly.2020.114607&partnerID=40&md5=e5f8515af714a8aa189b4b0558634d45
PY - 2020
Y1 - 2020
N2 - In this paper we report the synthesis and characterization (NMR, IR, elemental analysis and XRD) of fifteen new Pd(II) allyl complexes containing at least one N-heterocyclic carbene ligand. The synthesized compounds and others previously published by our research group, have been tested against the six tumor lines OVCAR5, A2780, A2780cis (ovarian cancer), DLD1 (colon cancer), A549 (lung cancer) and A375 (malignant melanoma). This comparative study, involving also complexes coordinating N[sbnd]S and N[sbnd]P heteroditopic ligands, shows that most of the tested compounds exhibit a much powerful antitumor activity than cisplatin on all tumor cell lines examined. In many cases, the antiproliferative activity on the A2780 (cisplatin-sensitive) and A2780cis (cisplatin-resistant) lines is comparable, suggesting a different mechanism of action of this class of molecules as compared to cisplatin and its derivatives. Moreover, a selected number of compounds among those reported are particularly promising since exhibit a markedly lower activity toward normal cells than to cancer cells. © 2020 Elsevier Ltd
AB - In this paper we report the synthesis and characterization (NMR, IR, elemental analysis and XRD) of fifteen new Pd(II) allyl complexes containing at least one N-heterocyclic carbene ligand. The synthesized compounds and others previously published by our research group, have been tested against the six tumor lines OVCAR5, A2780, A2780cis (ovarian cancer), DLD1 (colon cancer), A549 (lung cancer) and A375 (malignant melanoma). This comparative study, involving also complexes coordinating N[sbnd]S and N[sbnd]P heteroditopic ligands, shows that most of the tested compounds exhibit a much powerful antitumor activity than cisplatin on all tumor cell lines examined. In many cases, the antiproliferative activity on the A2780 (cisplatin-sensitive) and A2780cis (cisplatin-resistant) lines is comparable, suggesting a different mechanism of action of this class of molecules as compared to cisplatin and its derivatives. Moreover, a selected number of compounds among those reported are particularly promising since exhibit a markedly lower activity toward normal cells than to cancer cells. © 2020 Elsevier Ltd
KW - Allyl palladium(II) complexes
KW - Anticancer activity
KW - Crystal structure
KW - N-Heterocyclic carbenes
KW - NMR spectroscopy
U2 - 10.1016/j.poly.2020.114607
DO - 10.1016/j.poly.2020.114607
M3 - Article
VL - 186
JO - Polyhedron
JF - Polyhedron
SN - 0277-5387
M1 - 114607
ER -