TY - JOUR
T1 - Synthesis of long-chain polyunsaturated fatty acids in preterm newborns fed formula with long-chain polyunsaturated fatty acids
AU - Carnielli, Virgilio P.
AU - Simonato, Manuela
AU - Verlato, Giovanna
AU - Luijendijk, Ingrid
AU - De Curtis, Mario
AU - Sauer, Pieter J J
AU - Cogo, Paola E.
PY - 2007/11/1
Y1 - 2007/11/1
N2 - Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are long-chain polyunsaturated fatty acids (LCPs) that play pivotal roles in growth and neurodevelopment. Objective: We aimed to quantify the synthesis of LCPs in preterm infants fed infant formula containing LCPs. Design: Twenty-two preterm infants were randomly assigned to either the no-LCP group (fed formula without LCPs; n = 11) or the LCP group (fed formula with LCPs; n = 11). Dietary LCPs had higher 13C content than did the endogenously synthesized LCPs, which were derived from linoleic and α-linolenic acids. The 13C content of major selected plasma fatty acids was measured by using gas chromatography-isotope ratio mass spectrometry at birth and at age 1, 3, and 7 mo. Absolute LCP synthesis and the percentage of LCP synthesis relative to dietary intake were calculated. Results: Percentage AA synthesis was 67.2 ± 7.8%, 35.9 ± 9.8%, and 29.0 ± 10.3%, and that of DHA was 41.7 ± 14.9%, 10.5 ± 8.1%, and 7.4 ± 6.2% at 1, 3, and 7 mo old, respectively. Absolute AA synthesis was 26.7 ± 4.2, 14.4 ± 3.9, and 11.6 ± 4.1mg · kg-1 · d-1 and that of DHA was 12.6 ± 4.5, 3.2 ± 2.5, and 2.3 ± 1.9 mg · kg-1 · d-1 at 1, 3, and 7 mo old, respectively. AA and DHA synthesis decreased significantly (P <0.01) with time, and AA synthesis was significantly (P <0.01) greater than DHA synthesis. Conclusions: By this novel approach, we measured endogenous LCP synthesis in infants receiving dietary LCPs over long periods. By age 7 mo, LCP synthesis was dramatically lower in preterm infants fed LCPs.
AB - Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are long-chain polyunsaturated fatty acids (LCPs) that play pivotal roles in growth and neurodevelopment. Objective: We aimed to quantify the synthesis of LCPs in preterm infants fed infant formula containing LCPs. Design: Twenty-two preterm infants were randomly assigned to either the no-LCP group (fed formula without LCPs; n = 11) or the LCP group (fed formula with LCPs; n = 11). Dietary LCPs had higher 13C content than did the endogenously synthesized LCPs, which were derived from linoleic and α-linolenic acids. The 13C content of major selected plasma fatty acids was measured by using gas chromatography-isotope ratio mass spectrometry at birth and at age 1, 3, and 7 mo. Absolute LCP synthesis and the percentage of LCP synthesis relative to dietary intake were calculated. Results: Percentage AA synthesis was 67.2 ± 7.8%, 35.9 ± 9.8%, and 29.0 ± 10.3%, and that of DHA was 41.7 ± 14.9%, 10.5 ± 8.1%, and 7.4 ± 6.2% at 1, 3, and 7 mo old, respectively. Absolute AA synthesis was 26.7 ± 4.2, 14.4 ± 3.9, and 11.6 ± 4.1mg · kg-1 · d-1 and that of DHA was 12.6 ± 4.5, 3.2 ± 2.5, and 2.3 ± 1.9 mg · kg-1 · d-1 at 1, 3, and 7 mo old, respectively. AA and DHA synthesis decreased significantly (P <0.01) with time, and AA synthesis was significantly (P <0.01) greater than DHA synthesis. Conclusions: By this novel approach, we measured endogenous LCP synthesis in infants receiving dietary LCPs over long periods. By age 7 mo, LCP synthesis was dramatically lower in preterm infants fed LCPs.
KW - Endogenous synthesis
KW - LCPs
KW - Long-chain polyunsaturated fatty acids
KW - Natural abundance
KW - Preterm infant
UR - http://www.scopus.com/inward/record.url?scp=36248957677&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36248957677&partnerID=8YFLogxK
M3 - Article
C2 - 17991642
AN - SCOPUS:36248957677
VL - 86
SP - 1323
EP - 1330
JO - American Journal of Clinical Nutrition
JF - American Journal of Clinical Nutrition
SN - 0002-9165
IS - 5
ER -