Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy

Maria Chiara Ciuffreda, Giuseppe Malpasso, Cindy Chokoza, Deon Bezuidenhout, Kyle P. Goetsch, Manuela Mura, Federica Pisano, Neil H. Davies, Massimiliano Gnecchi

Research output: Contribution to journalArticle

Abstract

Background: Mesenchymal stromal cells (MSC) repair infarcted hearts mainly through paracrine mechanisms. Low cell engraftment limits the release of soluble paracrine factors (SF) over time and, consequently, MSC efficacy. We tested whether a synthetic extracellular matrix mimic, a hydrogel containing heparin (H-HG), could ameliorate MSC engraftment and binding/release of SF, thus improving MSC therapy efficacy. Methods and results: In vitro, rat bone-marrow MSC (rBM-MSC) were seeded and grown into H-HG. Under normoxia, the hydrogel did not affect cell survival (rBM-MSC survival >90% at each time point tested); vice versa, under hypoxia the biomaterial resulted to be protective for the cells (p <.001 vs rBM-MSC alone). H-HG or control PEG hydrogels (HG) were incubated with VEGF or bFGF for binding/release quantification. Data showed significantly higher amount of VEGF and bFGF bound by H-HG compared with HG (p <.05) and a constant release over time. In vivo, myocardial infarction (MI) was induced in female Sprague Dawley rats by permanent coronary ligation. One week later, saline, rBM-MSC, H-HG or rBM-MSC/H-HG were injected in the infarct zone. The co-injection of rBM-MSC/H-HG into infarcted hearts significantly increased cardiac function. Importantly, we observed a significant gain in MSC engraftment, reduction of ventricular remodeling and stimulation of neo-vasculogenesis. We also documented higher amounts of several pro-angiogenic factors in hearts treated with rBM-MSC/H-HG. Conclusions: Our data show that H-HG increases MSC engraftment, efficiently fine tunes the paracrine MSC actions and improves cardiac function in infarcted rat hearts. Statement of Significance: Transplantation of MSC is a promising treatment for ischemic heart disease, but low cell engraftment has so far limited its efficacy. The enzymatically degradable H-HG that we developed is able to increase MSC retention/engraftment and, at the same time, to fine-tune the paracrine effects mediated by the cells. Most importantly, the co-transplantation of MSC and H-HG in a rat model of ischemic cardiomyopathy improved heart function through a significant reduction in ventricular remodeling/scarring and amelioration in neo-vasculogenesis/endogenous cardiac regeneration. These beneficial effects are comparable to those obtained by others using a much greater number of cells, strengthening the efficacy of the biomaterial used in increasing the therapeutic effects of MSC. Given its efficacy and safety, documented by the absence of immunoreaction, our strategy appears readily translatable to clinical scenarios.

Original languageEnglish
Pages (from-to)71-83
Number of pages13
JournalActa Biomaterialia
Volume70
DOIs
Publication statusPublished - Apr 1 2018

Fingerprint

Hydrogels
Hydrogel
Cell- and Tissue-Based Therapy
Mesenchymal Stromal Cells
Cardiomyopathies
Extracellular Matrix
Rats
Bone
Bone Marrow
Ventricular Remodeling
Biocompatible Materials
Vascular Endothelial Growth Factor A
Biomaterials
Transplantation
Angiogenesis Inducing Agents
Therapeutic Uses
Polyethylene glycols
Cicatrix
Myocardial Ischemia
Ligation

Keywords

  • Biomaterial
  • Hydrogel
  • Mesenchymal stromal cells
  • Myocardial infarction
  • Paracrine effect

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology

Cite this

Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. / Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Chokoza, Cindy; Bezuidenhout, Deon; Goetsch, Kyle P.; Mura, Manuela; Pisano, Federica; Davies, Neil H.; Gnecchi, Massimiliano.

In: Acta Biomaterialia, Vol. 70, 01.04.2018, p. 71-83.

Research output: Contribution to journalArticle

@article{7306bd7f31a54189b991301109496a15,
title = "Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy",
abstract = "Background: Mesenchymal stromal cells (MSC) repair infarcted hearts mainly through paracrine mechanisms. Low cell engraftment limits the release of soluble paracrine factors (SF) over time and, consequently, MSC efficacy. We tested whether a synthetic extracellular matrix mimic, a hydrogel containing heparin (H-HG), could ameliorate MSC engraftment and binding/release of SF, thus improving MSC therapy efficacy. Methods and results: In vitro, rat bone-marrow MSC (rBM-MSC) were seeded and grown into H-HG. Under normoxia, the hydrogel did not affect cell survival (rBM-MSC survival >90{\%} at each time point tested); vice versa, under hypoxia the biomaterial resulted to be protective for the cells (p <.001 vs rBM-MSC alone). H-HG or control PEG hydrogels (HG) were incubated with VEGF or bFGF for binding/release quantification. Data showed significantly higher amount of VEGF and bFGF bound by H-HG compared with HG (p <.05) and a constant release over time. In vivo, myocardial infarction (MI) was induced in female Sprague Dawley rats by permanent coronary ligation. One week later, saline, rBM-MSC, H-HG or rBM-MSC/H-HG were injected in the infarct zone. The co-injection of rBM-MSC/H-HG into infarcted hearts significantly increased cardiac function. Importantly, we observed a significant gain in MSC engraftment, reduction of ventricular remodeling and stimulation of neo-vasculogenesis. We also documented higher amounts of several pro-angiogenic factors in hearts treated with rBM-MSC/H-HG. Conclusions: Our data show that H-HG increases MSC engraftment, efficiently fine tunes the paracrine MSC actions and improves cardiac function in infarcted rat hearts. Statement of Significance: Transplantation of MSC is a promising treatment for ischemic heart disease, but low cell engraftment has so far limited its efficacy. The enzymatically degradable H-HG that we developed is able to increase MSC retention/engraftment and, at the same time, to fine-tune the paracrine effects mediated by the cells. Most importantly, the co-transplantation of MSC and H-HG in a rat model of ischemic cardiomyopathy improved heart function through a significant reduction in ventricular remodeling/scarring and amelioration in neo-vasculogenesis/endogenous cardiac regeneration. These beneficial effects are comparable to those obtained by others using a much greater number of cells, strengthening the efficacy of the biomaterial used in increasing the therapeutic effects of MSC. Given its efficacy and safety, documented by the absence of immunoreaction, our strategy appears readily translatable to clinical scenarios.",
keywords = "Biomaterial, Hydrogel, Mesenchymal stromal cells, Myocardial infarction, Paracrine effect",
author = "Ciuffreda, {Maria Chiara} and Giuseppe Malpasso and Cindy Chokoza and Deon Bezuidenhout and Goetsch, {Kyle P.} and Manuela Mura and Federica Pisano and Davies, {Neil H.} and Massimiliano Gnecchi",
year = "2018",
month = "4",
day = "1",
doi = "10.1016/j.actbio.2018.01.005",
language = "English",
volume = "70",
pages = "71--83",
journal = "Acta Biomaterialia",
issn = "1742-7061",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy

AU - Ciuffreda, Maria Chiara

AU - Malpasso, Giuseppe

AU - Chokoza, Cindy

AU - Bezuidenhout, Deon

AU - Goetsch, Kyle P.

AU - Mura, Manuela

AU - Pisano, Federica

AU - Davies, Neil H.

AU - Gnecchi, Massimiliano

PY - 2018/4/1

Y1 - 2018/4/1

N2 - Background: Mesenchymal stromal cells (MSC) repair infarcted hearts mainly through paracrine mechanisms. Low cell engraftment limits the release of soluble paracrine factors (SF) over time and, consequently, MSC efficacy. We tested whether a synthetic extracellular matrix mimic, a hydrogel containing heparin (H-HG), could ameliorate MSC engraftment and binding/release of SF, thus improving MSC therapy efficacy. Methods and results: In vitro, rat bone-marrow MSC (rBM-MSC) were seeded and grown into H-HG. Under normoxia, the hydrogel did not affect cell survival (rBM-MSC survival >90% at each time point tested); vice versa, under hypoxia the biomaterial resulted to be protective for the cells (p <.001 vs rBM-MSC alone). H-HG or control PEG hydrogels (HG) were incubated with VEGF or bFGF for binding/release quantification. Data showed significantly higher amount of VEGF and bFGF bound by H-HG compared with HG (p <.05) and a constant release over time. In vivo, myocardial infarction (MI) was induced in female Sprague Dawley rats by permanent coronary ligation. One week later, saline, rBM-MSC, H-HG or rBM-MSC/H-HG were injected in the infarct zone. The co-injection of rBM-MSC/H-HG into infarcted hearts significantly increased cardiac function. Importantly, we observed a significant gain in MSC engraftment, reduction of ventricular remodeling and stimulation of neo-vasculogenesis. We also documented higher amounts of several pro-angiogenic factors in hearts treated with rBM-MSC/H-HG. Conclusions: Our data show that H-HG increases MSC engraftment, efficiently fine tunes the paracrine MSC actions and improves cardiac function in infarcted rat hearts. Statement of Significance: Transplantation of MSC is a promising treatment for ischemic heart disease, but low cell engraftment has so far limited its efficacy. The enzymatically degradable H-HG that we developed is able to increase MSC retention/engraftment and, at the same time, to fine-tune the paracrine effects mediated by the cells. Most importantly, the co-transplantation of MSC and H-HG in a rat model of ischemic cardiomyopathy improved heart function through a significant reduction in ventricular remodeling/scarring and amelioration in neo-vasculogenesis/endogenous cardiac regeneration. These beneficial effects are comparable to those obtained by others using a much greater number of cells, strengthening the efficacy of the biomaterial used in increasing the therapeutic effects of MSC. Given its efficacy and safety, documented by the absence of immunoreaction, our strategy appears readily translatable to clinical scenarios.

AB - Background: Mesenchymal stromal cells (MSC) repair infarcted hearts mainly through paracrine mechanisms. Low cell engraftment limits the release of soluble paracrine factors (SF) over time and, consequently, MSC efficacy. We tested whether a synthetic extracellular matrix mimic, a hydrogel containing heparin (H-HG), could ameliorate MSC engraftment and binding/release of SF, thus improving MSC therapy efficacy. Methods and results: In vitro, rat bone-marrow MSC (rBM-MSC) were seeded and grown into H-HG. Under normoxia, the hydrogel did not affect cell survival (rBM-MSC survival >90% at each time point tested); vice versa, under hypoxia the biomaterial resulted to be protective for the cells (p <.001 vs rBM-MSC alone). H-HG or control PEG hydrogels (HG) were incubated with VEGF or bFGF for binding/release quantification. Data showed significantly higher amount of VEGF and bFGF bound by H-HG compared with HG (p <.05) and a constant release over time. In vivo, myocardial infarction (MI) was induced in female Sprague Dawley rats by permanent coronary ligation. One week later, saline, rBM-MSC, H-HG or rBM-MSC/H-HG were injected in the infarct zone. The co-injection of rBM-MSC/H-HG into infarcted hearts significantly increased cardiac function. Importantly, we observed a significant gain in MSC engraftment, reduction of ventricular remodeling and stimulation of neo-vasculogenesis. We also documented higher amounts of several pro-angiogenic factors in hearts treated with rBM-MSC/H-HG. Conclusions: Our data show that H-HG increases MSC engraftment, efficiently fine tunes the paracrine MSC actions and improves cardiac function in infarcted rat hearts. Statement of Significance: Transplantation of MSC is a promising treatment for ischemic heart disease, but low cell engraftment has so far limited its efficacy. The enzymatically degradable H-HG that we developed is able to increase MSC retention/engraftment and, at the same time, to fine-tune the paracrine effects mediated by the cells. Most importantly, the co-transplantation of MSC and H-HG in a rat model of ischemic cardiomyopathy improved heart function through a significant reduction in ventricular remodeling/scarring and amelioration in neo-vasculogenesis/endogenous cardiac regeneration. These beneficial effects are comparable to those obtained by others using a much greater number of cells, strengthening the efficacy of the biomaterial used in increasing the therapeutic effects of MSC. Given its efficacy and safety, documented by the absence of immunoreaction, our strategy appears readily translatable to clinical scenarios.

KW - Biomaterial

KW - Hydrogel

KW - Mesenchymal stromal cells

KW - Myocardial infarction

KW - Paracrine effect

UR - http://www.scopus.com/inward/record.url?scp=85042651855&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042651855&partnerID=8YFLogxK

U2 - 10.1016/j.actbio.2018.01.005

DO - 10.1016/j.actbio.2018.01.005

M3 - Article

AN - SCOPUS:85042651855

VL - 70

SP - 71

EP - 83

JO - Acta Biomaterialia

JF - Acta Biomaterialia

SN - 1742-7061

ER -