Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells

Yansheng Liu, Christelle Borel, Li Li, Torsten Müller, Evan G. Williams, Pierre Luc Germain, Marija Buljan, Tatjana Sajic, Paul J. Boersema, Wenguang Shao, Marco Faini, Giuseppe Testa, Andreas Beyer, Stylianos E. Antonarakis, Ruedi Aebersold

Research output: Contribution to journalArticlepeer-review


Down syndrome (DS) is mostly caused by a trisomy of the entire Chromosome 21 (Trisomy 21, T21). Here, we use SWATH mass spectrometry to quantify protein abundance and protein turnover in fibroblasts from a monozygotic twin pair discordant for T21, and to profile protein expression in 11 unrelated DS individuals and matched controls. The integration of the steady-state and turnover proteomic data indicates that protein-specific degradation of members of stoichiometric complexes is a major determinant of T21 gene dosage outcome, both within and between individuals. This effect is not apparent from genomic and transcriptomic data. The data also reveal that T21 results in extensive proteome remodeling, affecting proteins encoded by all chromosomes. Finally, we find broad, organelle-specific post-transcriptional effects such as significant downregulation of the mitochondrial proteome contributing to T21 hallmarks. Overall, we provide a valuable proteomic resource to understand the origin of DS phenotypic manifestations.

Original languageEnglish
Article number1212
JournalNature Communications
Issue number1
Publication statusPublished - Dec 1 2017

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells'. Together they form a unique fingerprint.

Cite this