TY - JOUR
T1 - The activating form of CD94 receptor complex
T2 - CD94 covalently associates with the Kp39 protein that represents the product of the NKG2-C gene
AU - Cantoni, Claudia
AU - Biassoni, Roberto
AU - Pende, Daniela
AU - Sivori, Simona
AU - Accame, Laura
AU - Pareti, Laura
AU - Semenzato, Gianpietro
AU - Moretta, Lorenzo
AU - Moretta, Alessandro
AU - Bottino, Cristina
PY - 1998/1
Y1 - 1998/1
N2 - Inhibitory receptor complexes formed by CD94 and NKG2-A (Kp43) molecules have been implicated in HLA class I recognition by human natural killer (NK) cells. Additional forms of CD94 receptors have recently been described in NK cells characterized by the lack of NKG2-A expression. These CD94 receptors were shown to display activating functions. Immunoprecipitation with anti-CD94 monoclonal antibodies (mAb) led to the identification, in these cells, of a 39-kDa (Kp39) molecule that was originally believed to represent an activating isoform of the CD94 molecules. In the present study we show that the Kp39 molecule is covalently associated with CD94 and displays a protein backbone (26 kDa) similar to that of NKG2-A (Kp43) glycoproteins. Peptide mapping analysis indicates that Kp39 and NKG2-A glycoproteins belong to the same molecular family. A novel NKG2-specific mAb (termed P25) has been generated that specifically reacts with both NKG2-A and NKG2-C molecules, but fails to recognize NKG2-E molecules. Analysis of polyclonal and clonal NK cells shows that P25 mAb reacts with all NKG2-A+ cells and with a fraction of CD94+ cells lacking the expression of NKG2-A. These data indicate that NKG2-C molecules are indeed expressed only in a subset of cells lacking the expression of NKG2-A. The CD94-associated Kp39 molecule can be detected only in NKG2-A- P25+ cells, i.e. cells expressing NKG2-C molecules. Indeed, reverse transcription-polymerase chain reaction analysis performed on a large panel of NK clones indicates that NKG2-A- P25+ NK clones express the NKG2-C transcript. Notably, the cytolytic activity of these clones can be triggered by the P25 mAb in redirected killing analysis. Finally, biochemical analysis of COS7 cells cotransfected with CD94 and NKG2-C demonstrates the identity between Kp39 and NKG2-C molecules. Altogether, our data demonstrate that NKG2-C molecules associate with CD94 to form an activating receptor complex in a subset of human NK cells.
AB - Inhibitory receptor complexes formed by CD94 and NKG2-A (Kp43) molecules have been implicated in HLA class I recognition by human natural killer (NK) cells. Additional forms of CD94 receptors have recently been described in NK cells characterized by the lack of NKG2-A expression. These CD94 receptors were shown to display activating functions. Immunoprecipitation with anti-CD94 monoclonal antibodies (mAb) led to the identification, in these cells, of a 39-kDa (Kp39) molecule that was originally believed to represent an activating isoform of the CD94 molecules. In the present study we show that the Kp39 molecule is covalently associated with CD94 and displays a protein backbone (26 kDa) similar to that of NKG2-A (Kp43) glycoproteins. Peptide mapping analysis indicates that Kp39 and NKG2-A glycoproteins belong to the same molecular family. A novel NKG2-specific mAb (termed P25) has been generated that specifically reacts with both NKG2-A and NKG2-C molecules, but fails to recognize NKG2-E molecules. Analysis of polyclonal and clonal NK cells shows that P25 mAb reacts with all NKG2-A+ cells and with a fraction of CD94+ cells lacking the expression of NKG2-A. These data indicate that NKG2-C molecules are indeed expressed only in a subset of cells lacking the expression of NKG2-A. The CD94-associated Kp39 molecule can be detected only in NKG2-A- P25+ cells, i.e. cells expressing NKG2-C molecules. Indeed, reverse transcription-polymerase chain reaction analysis performed on a large panel of NK clones indicates that NKG2-A- P25+ NK clones express the NKG2-C transcript. Notably, the cytolytic activity of these clones can be triggered by the P25 mAb in redirected killing analysis. Finally, biochemical analysis of COS7 cells cotransfected with CD94 and NKG2-C demonstrates the identity between Kp39 and NKG2-C molecules. Altogether, our data demonstrate that NKG2-C molecules associate with CD94 to form an activating receptor complex in a subset of human NK cells.
KW - Activating receptor
KW - CD94 complex
KW - Human NK cell
KW - NKG2-C
UR - http://www.scopus.com/inward/record.url?scp=0031974596&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031974596&partnerID=8YFLogxK
U2 - 10.1002/(SICI)1521-4141(199801)28:01<327::AID-IMMU327>3.0.CO;2-O
DO - 10.1002/(SICI)1521-4141(199801)28:01<327::AID-IMMU327>3.0.CO;2-O
M3 - Article
C2 - 9485212
AN - SCOPUS:0031974596
VL - 28
SP - 327
EP - 338
JO - European Journal of Immunology
JF - European Journal of Immunology
SN - 0014-2980
IS - 1
ER -