The antiepileptic drug levetiracetam decreases the inositol 1,4,5-trisphosphate-dependent [Ca2+]i increase induced by ATP and bradykinin in PC12 cells

Mauro Cataldi, Vincenzo Lariccia, Agnese Secondo, Gianfranco Di Renzo, Lucio Annunziato

Research output: Contribution to journalArticle


The present study explores the hypothesis that the new anti-epileptic drug levetiracetam (LEV) could interfere with the inositol 1,4,5-trisphosphate (IP3)-dependent release of intracellular Ca2+ initiated by Gq-coupled receptor activation, a process that plays a role in triggering and maintaining seizures. We assessed the effect of LEV on the amplitude of [Ca2+]i response to bradykinin (BK) and ATP in single Fura-2/acetoxymethyl ester-loaded PC12 rat pheochromocytoma cells, which express very high levels of LEV binding sites. LEV dose-dependently reduced the [Ca2+]i increase, elicited either by 1 μM BK or by 100 μM ATP (IC50, 0.39 ± 0.01 μM for BK and 0.20 ± 0.01 μM for ATP; Hill coefficients, 1.33 ± 0.04 for BK and 1.38 ± 0.06 for ATP). Interestingly, although the discharge of ryanodine stores by a process of calcium-induced calcium release also took place as part of the [Ca2+]i, response to BK, LEV inhibitory effect was mainly exerted on the IP3-dependent stores. In fact, the drug was still effective after the pharmacological blockade of ryanodine receptors. Furthermore, LEV did not affect Ca2+ stored in the intracellular deposits since it did not reduce the amplitude of [Ca 2+]i response either to thapsigargin or to ionomycin. In conclusion, LEV inhibits Ca2+ release from the IP3- sensitive stores without reducing Ca2+ storage into these deposits. Because of the relevant implications of IP3-dependent Ca2+ release in neuron excitability and epileptogenesis, this novel effect of LEV could provide a useful insight into the mechanisms underlying its antiepileptic properties.

Original languageEnglish
Pages (from-to)720-730
Number of pages11
JournalJournal of Pharmacology and Experimental Therapeutics
Issue number2
Publication statusPublished - May 2005


ASJC Scopus subject areas

  • Pharmacology

Cite this