The cleavage of the urokinase receptor regulates its multiple functions

Nunzia Montuori, Maria Vincenza Carriero, Salvatore Salzano, Guido Rossi, Pia Ragno

Research output: Contribution to journalArticlepeer-review


The urokinase-type plasminogen activator (uPA) is able to cleave its cell surface receptor (uPAR) anchored to the cell membrane through a glycophosphatidylinositol tail. The cleavage leads to the formation of cell surface truncated forms, devoid of the N-terminal domain 1 (Dl) and unmasks or disrupts, depending on the cleavage site, a sequence in the D1-D2 linker region (residues 88-92), which in the soluble form is a potent chemoattractant for monocyte-like cells. To investigate the possible role(s) of the cleaved forms of cell surface glycophosphatidylinositol-anchored uPAR, uPAR-negative human embrional kidney 293 cells were transfected with the cDNA of intact uPAR, (uPAR-293) or with cDNAs corresponding to the truncated forms of uPAR exposing (D2D3-293) or lacking (D2D3wc-293) the peptide 88-92 (P88-92). Cell adhesion assays and co-immunoprecipitation experiments indicated that the removal of D1, independently of the presence of P88-92, abolished the lateral interaction of uPAR with integrins and its capability to regulate integrin adhesive functions. The expression of intact uPAR induced also a moderate increase in 293 cell proliferation, which was accompanied by the activation of ERK. Also this effect was abolished by D1 removal, independently of the presence of P88-92. The expression of intact and truncated uPARs regulated cell directional migration toward uPA, the specific uPAR ligand, and toward fMLP, a bacterial chemotactic peptide. In fact, the uPA-dependent cell migration required the expression of intact uPAR, including D1, whereas the fMLP-dependent cell migration required the expression of a P88-92 containing uPAR and was independent of the presence of D1. Together these observations indicate that uPA-mediated uPAR cleavage and D1 removal, occurring on the cell surface of several cell types, can play a fundamental role in the regulation of multiple uPAR functions.

Original languageEnglish
Pages (from-to)46932-46939
Number of pages8
JournalJournal of Biological Chemistry
Issue number49
Publication statusPublished - Dec 6 2002

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'The cleavage of the urokinase receptor regulates its multiple functions'. Together they form a unique fingerprint.

Cite this