The cognitive side of M1

Barbara Tomasino, Michele Gremese

Research output: Contribution to journalArticlepeer-review


The primary motor cortex (M1) is traditionally implicated in voluntary movement control. In order to test the hypothesis that there is a functional topography of M1 activation in studies where it has been implicated in higher cognitive tasks we performed activation-likelihood-estimation (ALE) meta-analyses of functional neuroimaging experiments reporting M1 activation in relation to six cognitive functional categories for which there was a sufficient number of studies to include, namely motor imagery, working memory, mental rotation, social/emotion/empathy, language, and auditory processing. The six categories activated different sub-sectors of M1, either bilaterally or lateralized to one hemisphere. Notably, the activations found in the M1 of the left or right hemisphere detected in our study were unlikely due to button presses. In fact, all contrasts were selected in order to eliminate M1 activation due to activity related to the finger button press. In addition, we identified the M1 sub-region of Area 4a commonly activated by 4/6 categories, namely motor imagery and working memory, emotion/empathy, and language. Overall, our findings lend support to the idea that there is a functional topography of M1 activation in studies where it has been found activated in higher cognitive tasks and that the left Area 4a can be involved in a number of cognitive processes, likely as a product of implicit mental simulation processing.

Original languageEnglish
Article number298
JournalFrontiers in Human Neuroscience
Issue numberJUNE2016
Publication statusPublished - Jun 17 2016


  • ALE meta-analysis
  • Cognitive processing
  • FMRI
  • M1
  • Primary motor cortex

ASJC Scopus subject areas

  • Psychiatry and Mental health
  • Neurology
  • Biological Psychiatry
  • Behavioral Neuroscience
  • Neuropsychology and Physiological Psychology

Fingerprint Dive into the research topics of 'The cognitive side of M1'. Together they form a unique fingerprint.

Cite this