TY - JOUR
T1 - The diverging roles of dendritic cells in kidney allotransplantation
AU - Podestà, Manuel Alfredo
AU - Cucchiari, David
AU - Ponticelli, Claudio
PY - 2015
Y1 - 2015
N2 - Dendritic cells (DCs) are a family of antigen presenting cells that play a paramount role in bridging innate and adaptive immunity. In murine models several subtypes of DCs have been identified, including classical DCs, monocyte-derived DCs, and plasmacytoid DCs. Quiescent, immature DCs and some subtypes of plasmacytoid cells favor the expression of regulatory T cells, but in an inflammatory milieu DCs become mature and after intercepting the antigen migrate to lymphatic system where they present the antigen to naïve T cells. Transplant rejection largely depends on the phenotype and maturation of DCs. The ischemia-reperfusion injury causes the release of endogenous molecules that are recognized as danger signals by the pattern recognition receptor of the innate immunity with subsequent activation of inflammatory cells and mediators. In this environment DCs become mature and migrate to lymphonodes where they present the alloantigen to T cells and direct their differentiation towards Th1 and Th17 effector cells. On the other hand, manipulation of DCs may favor T cell differentiation towards tolerant Th2 and T regulators (Treg). Experimental studies in murine models showed the possibility of inducing an operational tolerance by injecting immature tolerogenic DCs. Recently, such a possibility has been also confirmed in primates. Although manipulation of DCs may represent an important step ahead in kidney transplantation, a number of technical and ethical issues should be solved before its clinical application.
AB - Dendritic cells (DCs) are a family of antigen presenting cells that play a paramount role in bridging innate and adaptive immunity. In murine models several subtypes of DCs have been identified, including classical DCs, monocyte-derived DCs, and plasmacytoid DCs. Quiescent, immature DCs and some subtypes of plasmacytoid cells favor the expression of regulatory T cells, but in an inflammatory milieu DCs become mature and after intercepting the antigen migrate to lymphatic system where they present the antigen to naïve T cells. Transplant rejection largely depends on the phenotype and maturation of DCs. The ischemia-reperfusion injury causes the release of endogenous molecules that are recognized as danger signals by the pattern recognition receptor of the innate immunity with subsequent activation of inflammatory cells and mediators. In this environment DCs become mature and migrate to lymphonodes where they present the alloantigen to T cells and direct their differentiation towards Th1 and Th17 effector cells. On the other hand, manipulation of DCs may favor T cell differentiation towards tolerant Th2 and T regulators (Treg). Experimental studies in murine models showed the possibility of inducing an operational tolerance by injecting immature tolerogenic DCs. Recently, such a possibility has been also confirmed in primates. Although manipulation of DCs may represent an important step ahead in kidney transplantation, a number of technical and ethical issues should be solved before its clinical application.
UR - http://www.scopus.com/inward/record.url?scp=84952877269&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84952877269&partnerID=8YFLogxK
U2 - 10.1016/j.trre.2015.04.001
DO - 10.1016/j.trre.2015.04.001
M3 - Article
C2 - 25934143
AN - SCOPUS:84952877269
VL - 29
SP - 114
EP - 120
JO - Transplantation Reviews
JF - Transplantation Reviews
SN - 0955-470X
IS - 3
ER -