The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction

B. Ceccarelli, R. Fesce, F. Grohovaz, C. Haimann

Research output: Contribution to journalArticlepeer-review

Abstract

1. Electrophysiology and morphology have been combined to investigate the time course of the exocytosis of quanta of neurotransmitter induced by elevated concentrations of K+ at the frog neuromuscular junction. 2. Replicas of freeze-fractured resting nerve terminals fixed in the presence of 20 mM-K+ showed images of fusion of synaptic vesicles with the presynaptic axolemma which were closely associated with the active zones. After 1 min in 20 mM-K+ fusions appeared also outside the active zones, and by 5 min they became uniformly distributed over the presynaptic membrane. 3. The average total density of fusions was not significantly different at the various times examined since it decreased at the active zones while it increased over the rest of the membrane. 4. Resting terminals fixed in 20 mM-K+ released 33 000-45 000 quanta after the addition of fixative; terminals stimulated by 20 mM-K+ for 1-5 min released 50 000-100 000 quanta during fixation. The fixative potentiated K+-induced transmitter release. 5. Fusions were uniformly distributed in terminals pre-incubated for 5 min in 20 mM-K+ without added Ca2+, stimulated by adding Ca2+ for 30 s, and then fixed. Conversely, after 5 min stimulation in hypertonic Ringer solution fusions remained predominantly located near the active zones. A similar distribution was observed after 15 min stimulation by a lower concentration of K+ (15 mM). 6. At all concentrations of K+ tested (10, 15, 20, 25 mM) miniature end-plate potential (MEPP) rate attained a steady-state value within 0-15 min. Values from a single junction were generally lower at higher concentrations of K+, which indicates partial inactivation of the secretion-recycling process. 7. The data indicate that K+ initially activates exocytosis at the active zones. Subsequently, ectopic exocytosis is activated while sites at the active zones appear to undergo partial inactivation. These phenomena are not related to the intensity or to the amount of previous secretion.

Original languageEnglish
Pages (from-to)163-183
Number of pages21
JournalJournal of Physiology
Volume401
Publication statusPublished - 1988

ASJC Scopus subject areas

  • Physiology

Fingerprint Dive into the research topics of 'The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction'. Together they form a unique fingerprint.

Cite this