TY - JOUR
T1 - The endoplasmic reticulum in PC12 cells
T2 - Evidence for a mosaic of domains differently specialized in Ca2+ handling
AU - Rooney, Eamonn
AU - Meldolesi, Jacopo
PY - 1996
Y1 - 1996
N2 - Velocity and isopycnic gradient centrifugation were employed to fractionate post-nuclear supernatants rapidly prepared from PC12 cells in order to characterize areas of the endoplasmic reticulum involved in various aspects of intracellular Ca2+ homeostasis. The endoplasmic reticulum Ca2+ pumping activity, defined by three properties studied in parallel in the isolated fractions; thapsigargin-sensitive uptake of 45Ca2+, Ca2+- dependent, thapsigargin-sensitive protein phosphorylation and Western blotting of sarcoplasmic reticulum calcium ATPase (SERCA) 2b and putative SERCA3 ATPases, was concentrated primarily in a few fractions located at the top and toward the bottom of velocity and isopycnic gradients, respectively. The endoplasmic reticulum Ca2+ release channel, the inositol 1,4,5- trisphosphate receptor, was concentrated in the same fractions as the Ca2+ pumps, and additionally in a few fractions distinctly poor in SERCAs. In contrast, two lumenal markers (protein disulfide isomerase and calreticulin, the major Ca2+ storage protein of non-muscle endoplasmic reticulum) were enriched in the middle fractions of the velocity gradients while calnexin, a Ca2+-binding membrane protein, was more widely distributed throughout the gradients. These results document a considerable degree of functional and compositional heterogeneity in the endoplasmic reticulum of neurosecretory PC12 cells. Even in the limited areas that appear specialized for rapid Ca2+ uptake and release the ratio between pumps and channels varies considerably. Within the rest of the system, insulated from short-term fluctuations of Ca2+ concentration, Ca2+-binding proteins appear to be extensively distributed, in agreement with the idea that the Ca2+ content of the endoplasmic reticulum serves multiple functions.
AB - Velocity and isopycnic gradient centrifugation were employed to fractionate post-nuclear supernatants rapidly prepared from PC12 cells in order to characterize areas of the endoplasmic reticulum involved in various aspects of intracellular Ca2+ homeostasis. The endoplasmic reticulum Ca2+ pumping activity, defined by three properties studied in parallel in the isolated fractions; thapsigargin-sensitive uptake of 45Ca2+, Ca2+- dependent, thapsigargin-sensitive protein phosphorylation and Western blotting of sarcoplasmic reticulum calcium ATPase (SERCA) 2b and putative SERCA3 ATPases, was concentrated primarily in a few fractions located at the top and toward the bottom of velocity and isopycnic gradients, respectively. The endoplasmic reticulum Ca2+ release channel, the inositol 1,4,5- trisphosphate receptor, was concentrated in the same fractions as the Ca2+ pumps, and additionally in a few fractions distinctly poor in SERCAs. In contrast, two lumenal markers (protein disulfide isomerase and calreticulin, the major Ca2+ storage protein of non-muscle endoplasmic reticulum) were enriched in the middle fractions of the velocity gradients while calnexin, a Ca2+-binding membrane protein, was more widely distributed throughout the gradients. These results document a considerable degree of functional and compositional heterogeneity in the endoplasmic reticulum of neurosecretory PC12 cells. Even in the limited areas that appear specialized for rapid Ca2+ uptake and release the ratio between pumps and channels varies considerably. Within the rest of the system, insulated from short-term fluctuations of Ca2+ concentration, Ca2+-binding proteins appear to be extensively distributed, in agreement with the idea that the Ca2+ content of the endoplasmic reticulum serves multiple functions.
UR - http://www.scopus.com/inward/record.url?scp=0029850426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029850426&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.46.29304
DO - 10.1074/jbc.271.46.29304
M3 - Article
C2 - 8910591
AN - SCOPUS:0029850426
VL - 271
SP - 29304
EP - 29311
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 46
ER -