The enhanced cytotoxic and pro-apoptotic effects of optimized simvastatin-loaded emulsomes on MCF-7 breast cancer cells

Zuhier A. Awan, Usama A. Fahmy, Shaimaa M. Badr-eldin, Tarek S. Ibrahim, Hani Z. Asfour, Mohammed W. Al-rabia, Anas Alfarsi, Nabil A. Alhakamy, Wesam H. Abdulaal, Hadeel Al Sadoun, Nawal Helmi, Ahmad O. Noor, Filippo Caraci, Diena M. Almasri, Giuseppe Caruso

Research output: Contribution to journalArticlepeer-review


Statins, including simvastatin (SMV), are commonly used for the control of hyperlipidaemia and have also proven therapeutic and preventative effects in cardiovascular diseases. Besides that, there is an emerging interest in their use as antineoplastic drugs as demonstrated by different studies showing their cytotoxic activity against different cancer cells. In this study, SMV-loaded emulsomes (SMV-EMLs) were formulated and evaluated for their cytotoxic activity in MCF-7 breast cancer cells. The emulsomes were prepared using a modified thin-film hydration technique. A Box–Behnken model was used to investigate the impact of formulation conditions on vesicle size and drug entrapment. The optimized formulation showed a spherical shape with a vesicle size of 112.42 ± 2.1 nm and an entrapment efficiency of 94.34 ± 1.11%. Assessment of cytotoxic activities indicated that the optimized SMV-EMLs formula exhibited significantly lower half maximal inhibitory concentration (IC50) against MCF-7 cells. Cell cycle analysis indicated the accumulation of cells in the G2-M phase as well as increased cell fraction in the pre-G1 phase, suggesting an enhancement of anti-apoptotic activity of SMV. The staining of cells with Annex V revealed an increase in early and late apoptosis, in line with the increased cellular content of caspase-3 and Bax. In addition, the mitochondrial membrane potential (MMP) was significantly decreased. In conclusion, SMV-EMLs demonstrated superior cell death-inducing activity against MCF-7 cells compared to pure SMV. This is mediated, at least in part, by enhanced pro-apoptotic activity and MMP modulation of SMV.

Original languageEnglish
Article number597
Pages (from-to)1-22
Number of pages22
Issue number7
Publication statusPublished - Jul 2020


  • Apoptosis
  • Breast cancer
  • Cell cycle
  • Cytotoxicity
  • Emulsomes
  • Simvastatin

ASJC Scopus subject areas

  • Pharmaceutical Science


Dive into the research topics of 'The enhanced cytotoxic and pro-apoptotic effects of optimized simvastatin-loaded emulsomes on MCF-7 breast cancer cells'. Together they form a unique fingerprint.

Cite this