The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism

F. Chiarini, M. Del Sole, S. Mongiorgi, G. C. Gaboardi, A. Cappellini, I. Mantovani, M. Y. Follo, J. A. McCubrey, A. M. Martelli

Research output: Contribution to journalArticle

Abstract

A significant impediment to the success of cancer chemotherapy is the occurrence of multidrug resistance, which, in many cases, is attributable to overexpression of membrane transport proteins, such as the 170-kDa P-glycoprotein (P-gp). Also, upregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt-signaling pathway is known to play an important role in drug resistance, and has been implicated in the aggressiveness of a number of different cancers, including T-acute lymphoblastic leukemia (T-ALL). We have investigated the therapeutic potential of the novel Akt inhibitor, perifosine (a synthetic alkylphospholipid), on human T-ALL CEM cells (CEM-R), characterized by both overexpression of P-gp and constitutive upregulation of the PI3K/ Akt network. Perifosine treatment induced death by apoptosis in CEM-R cells. Apoptosis was characterized by caspase activation, Bid cleavage and cytochrome c release from mitochondria. The proapoptotic effect of perifosine was in part dependent on the Fas/FasL interactions and c-Jun NH2-terminal kinase (JNK) activation, as well as on the integrity of lipid rafts. Perifosine downregulated the expression of P-gp mRNA and protein and this effect required JNK activity. Our findings indicate that perifosine is a promising therapeutic agent for treatment of T-ALL cases characterized by both upregulation of the PI3K/Akt survival pathway and overexpression of P-gp.

Original languageEnglish
Pages (from-to)1106-1116
Number of pages11
JournalLeukemia
Volume22
Issue number6
DOIs
Publication statusPublished - Jun 2008

    Fingerprint

ASJC Scopus subject areas

  • Hematology
  • Cancer Research

Cite this