The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome

Roberta Melchionna, Pierluigi Iapicca, Francesca Di Modugno Damiani, Paola Trono, Isabella Sperduti, Matteo Fassan, Ivana Cataldo, Borislav C. Rusev, Rita T. Lawlor, Maria Diodoro, Michele Milella, Gian Luca Grazi, Mina J. Bissell, Aldo Scarpa, Paola Nistico'

Research output: Contribution to journalArticlepeer-review


Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease in need of prognostic markers to address therapeutic choices. We have previously shown that alternative splicing of the actin regulator, hMENA, generates hMENA11a, and hMENAΔv6 isoforms with opposite roles in cell invasion. We examined the expression pattern of hMENA isoforms by immunohistochemistry, using anti-pan hMENA and specific anti-hMENA11a antibodies, in 285 PDACs, 15 PanINs, 10 pancreatitis, and normal pancreas. Pan hMENA immunostaining, absent in normal pancreas and low-grade PanINs, was weak in PanIN-3 and had higher levels in virtually all PDACs with 64% of cases showing strong staining. Conversely, the anti-invasive hMENA11a isoform only showed strong staining in 26% of PDAC. The absence of hMENA11a in a subset (34%) of pan-hMENA-positive tumors significantly correlated with poor outcome. The functional effects of hMENA isoforms were analyzed by loss and gain of function experiments in TGF-β1-treated PDAC cell lines. hMENA11a knock-down in PDAC cell lines affected cell–cell adhesion but not invasion. TGF-β1 cooperated with β-catenin signaling to upregulate hMENA and hMENAΔv6 expression but not hMENA11a In the absence of hMENA11a, the hMENA/hMENAΔv6 up-regulation is crucial for SMAD2-mediated TGF-β1 signaling and TGF-β1-induced EMT. Since the hMENA isoform expression pattern correlates with patient outcome, the data suggest that hMENA splicing and related pathways are novel key players in pancreatic tumor microenvironment and may represent promising targets for the development of new prognostic and therapeutic tools in PDAC.

Original languageEnglish
Article numbere1221556
Issue number12
Publication statusPublished - Dec 1 2016


  • Actin Cytoskeleton
  • EMT
  • hMENA alternative splicing
  • PDAC
  • TGF-β1

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Oncology


Dive into the research topics of 'The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome'. Together they form a unique fingerprint.

Cite this