The potential role of FLT3 ligand in progenitor and primitive hematopoietic cell expansion.

A. Poloni, L. Douay, M. C. Giarratana, L. Kobari, N. C. Gorin, A. Olivieri, P. Leoni

Research output: Contribution to journalArticle

Abstract

We have previously defined the experimental conditions for hematopoietic cell expansion. CD34+ human marrow cells were maintained in a serum-free, stroma-free liquid culture system, at a concentration of 10(3) cells/ml, for 10 days at 37 degrees C, in the presence of various cytokine combinations. The basic combination of early cytokines SCF (100 ng/ml), IL3 (5 ng/ml), IL6 (10 ng/ml), has a modest stimulating effect on all compartments: the number of total cells increased 56-fold and CD34+ cells 1-fold; CFU-GM, BFU-E and CFU-MK, increased 6-fold, 5-fold and 3-fold respectively. As far as CD34+ cells are concerned, the subpopulation CD34+/CD38- was only maintained. Interestingly, the addition of 100 ng/ml of Flt3 ligand (FL) significantly enhanced the amplification of total cells (276-fold), CFU-GM (54-fold) and BFU-E (15-fold). The number of CD34+ cells and the subpopulation CD34+/38- increased to 7-fold and 22-fold respectively. Moreover, long term culture-initiating cells (LTC-ICs) in limiting dilution assay (LDA) were found to increase 3-fold. Further addition of MGDF (10 ng/ml), G-CSF (10 ng/ml) and Epo (0.5 U/ml), in various combinations, acted synergically with the previous cytokine combination to support the formation of multiple types of hematopoietic colonies. As expected, the addition of MGDF increased the number of CFU-MK up to 5-fold expansion. Interestingly, MGDF addition was synergistic also for BFU-E and CFU-GM expansion. In the combination of SCF+ IL3+ IL6+ FL + MGDF, CFU-GM expanded to 73-fold and BFU-E to 17-fold. G-CSF in SCF + IL3 + IL6 + FL conditions stressed the expansion of the granulopoietic compartment doubling the number of CFU-GM and CD33+ cells, with no consequence on LTC-IC or BFU-E. Surprisingly, G-CSF induced the expansion of the megakaryocytic lineage up to 6-fold, in a similar way as MGDF. Epo in presence of SCF+ IL3+ IL6+/-FL dramatically increased total cell expansion (2300-2800-fold), mainly erythroblastic (70% glycoA) without exhaustion of all other compartments. The simultaneous use of these three cytokines (MGDF + G-CSF + Epo) in presence of four early cytokines (SCF + IL3 + IL6 + FL) clearly allows a significant expansion of all hematopoietic compartments, precursors, progenitors, and primitive stem cells. In conclusion, these data show the ability of a stroma-free, serum-free liquid system to expand all myeloid lineages, including CFU-MK and LTC-IC which are critical for clinical application of ex vivo expanded cells.

Original languageEnglish
Pages (from-to)55-62
Number of pages8
JournalBollettino della Societa Italiana di Biologia Sperimentale
Volume73
Issue number3-4
Publication statusPublished - 1997

Fingerprint Dive into the research topics of 'The potential role of FLT3 ligand in progenitor and primitive hematopoietic cell expansion.'. Together they form a unique fingerprint.

  • Cite this

    Poloni, A., Douay, L., Giarratana, M. C., Kobari, L., Gorin, N. C., Olivieri, A., & Leoni, P. (1997). The potential role of FLT3 ligand in progenitor and primitive hematopoietic cell expansion. Bollettino della Societa Italiana di Biologia Sperimentale, 73(3-4), 55-62.