The what and how of observational learning

Sara Torriero, Massimiliano Oliveri, Giacomo Koch, Carlo Caltagirone, Laura Petrosini

Research output: Contribution to journalArticle

Abstract

Neuroimaging evidence increasingly supports the hypothesis that the same neural structures subserve the execution, imagination, and observation of actions. We used repetitive transcranial magnetic stimulation (rTMS) to investigate the specific roles of cerebellum and dorsolateral prefrontal cortex (DLPFC) in observational learning of a visuomotor task. Subjects observed an actor detecting a hidden sequence in a matrix and then performed the task detecting either the previously observed sequence or a new one. rTMS applied over the cerebellum before the observational training interfered with performance of the new sequence, whereas rTMS applied over the DLPFC interfered with performance of the previously observed one. When rTMS applied over cerebellar or prefrontal site was delivered after the observational training, no influence was observed on the execution of the task. These results furnish new insights on the neural circuitry involved in the single component of observational learning and allow us to hypothesize that cerebellum and DLPFC interact in planning actions, the former by permitting the acquisition of procedural competencies and the latter by providing flexibility among already acquired solutions.

Original languageEnglish
Pages (from-to)1656-1663
Number of pages8
JournalJournal of Cognitive Neuroscience
Volume19
Issue number10
DOIs
Publication statusPublished - Oct 2007

ASJC Scopus subject areas

  • Behavioral Neuroscience
  • Experimental and Cognitive Psychology
  • Cognitive Neuroscience

Fingerprint Dive into the research topics of 'The what and how of observational learning'. Together they form a unique fingerprint.

  • Cite this