Three-dimensional bioprinting of cartilage by the use of stem cells: A strategy to improve regeneration

Livia Roseti, Carola Cavallo, Giovanna Desando, Valentina Parisi, Mauro Petretta, Isabella Bartolotti, Brunella Grigolo

Research output: Contribution to journalReview article

Abstract

Cartilage lesions fail to heal spontaneously, leading to the development of chronic conditions which worsen the life quality of patients. Three-dimensional scaffold-based bioprinting holds the potential of tissue regeneration through the creation of organized, living constructs via a "layer-by-layer" deposition of small units of biomaterials and cells. This technique displays important advantages to mimic natural cartilage over traditional methods by allowing a fine control of cell distribution, and the modulation of mechanical and chemical properties. This opens up a number of new perspectives including personalized medicine through the development of complex structures (the osteochondral compartment), different types of cartilage (hyaline, fibrous), and constructs according to a specific patient's needs. However, the choice of the ideal combination of biomaterials and cells for cartilage bioprinting is still a challenge. Stem cells may improve material mimicry ability thanks to their unique properties: the immune-privileged status and the paracrine activity. Here, we review the recent advances in cartilage three-dimensional, scaffold-based bioprinting using stem cells and identify future developments for clinical translation. Database search terms used to write this review were: "articular cartilage", "menisci", "3D bioprinting", "bioinks", "stem cells", and "cartilage tissue engineering".

Original languageEnglish
Article number1749
Pages (from-to)1-20
Number of pages20
JournalMaterials
Volume11
Issue number9
DOIs
Publication statusPublished - Sep 17 2018

Keywords

  • 3D bioprinting
  • 4D printing
  • Bioink
  • Biomaterials
  • Cartilage
  • Meniscus
  • Organ-on-a-chip
  • Osteoarthritis
  • Stem cells

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Three-dimensional bioprinting of cartilage by the use of stem cells: A strategy to improve regeneration'. Together they form a unique fingerprint.

  • Cite this