Thrombomodulin mutations in atypical hemolytic-uremic syndrome

Mieke Delvaeye, Marina Noris, Astrid De Vriese, Charles T. Esmon, Naomi L. Esmon, Gary Ferrell, Jurgen Del-Favero, Stephane Plaisance, Bart Claes, Diether Lambrechts, Carla Zoja, Giuseppe Remuzzi, Edward M. Conway

Research output: Contribution to journalArticle

Abstract

BACKGROUND: The hemolytic-uremic syndrome consists of the triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. The common form of the syndrome is triggered by infection with Shiga toxin-producing bacteria and has a favorable outcome. The less common form of the syndrome, called atypical hemolytic-uremic syndrome, accounts for about 10% of cases, and patients with this form of the syndrome have a poor prognosis. Approximately half of the patients with atypical hemolytic-uremic syndrome have mutations in genes that regulate the complement system. Genetic factors in the remaining cases are unknown. We studied the role of thrombomodulin, an endothelial glycoprotein with anticoagulant, antiinflammatory, and cytoprotective properties, in atypical hemolytic-uremic syndrome. METHODS: We sequenced the entire thrombomodulin gene (THBD) in 152 patients with atypical hemolytic-uremic syndrome and in 380 controls. Using purified proteins and cell-expression systems, we investigated whether thrombomodulin regulates the complement system, and we characterized the mechanisms. We evaluated the effects of thrombomodulin missense mutations associated with atypical hemolytic-uremic syndrome on complement activation by expressing thrombomodulin variants in cultured cells. RESULTS: Of 152 patients with atypical hemolytic-uremic syndrome, 7 unrelated patients had six different heterozygous missense THBD mutations. In vitro, thrombomodulin binds to C3b and factor H (CFH) and negatively regulates complement by accelerating factor I-mediated inactivation of C3b in the presence of cofactors, CFH or C4b binding protein. By promoting activation of the plasma procarboxypeptidase B, thrombomodulin also accelerates the inactivation of anaphylatoxins C3a and C5a. Cultured cells expressing thrombomodulin variants associated with atypical hemolytic-uremic syndrome had diminished capacity to inactivate C3b and to activate procarboxypeptidase B and were thus less protected from activated complement. CONCLUSIONS: Mutations that impair the function of thrombomodulin occur in about 5% of patients with atypical hemolytic-uremic syndrome.

Original languageEnglish
Pages (from-to)345-357
Number of pages13
JournalNew England Journal of Medicine
Volume361
Issue number4
DOIs
Publication statusPublished - Jul 23 2009

    Fingerprint

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Delvaeye, M., Noris, M., De Vriese, A., Esmon, C. T., Esmon, N. L., Ferrell, G., Del-Favero, J., Plaisance, S., Claes, B., Lambrechts, D., Zoja, C., Remuzzi, G., & Conway, E. M. (2009). Thrombomodulin mutations in atypical hemolytic-uremic syndrome. New England Journal of Medicine, 361(4), 345-357. https://doi.org/10.1056/NEJMoa0810739