Tissue engineering for total meniscal substitution: Animal study in sheep model

Elizaveta Kon, Catharina Chiari, Maurilio Marcacci, Marco Delcogliano, Donald M. Salter, Ivan Martin, Luigi Ambrosio, Milena Fini, Matilde Tschon, Enrico Tognana, Roberto Plasenzotti, Stefan Nehrer

Research output: Contribution to journalArticlepeer-review


Objective: The aim of the study was to investigate the use of a novel hyaluronic acid/polycaprolactone material for meniscal tissue engineering and to evaluate the tissue regeneration after the augmentation of the implant with expanded autologous chondrocytes. Two different surgical implantation techniques in a sheep model were evaluated. Methods: Twenty-four skeletally mature sheep were treated with total medial meniscus replacements, while two meniscectomies served as empty controls. The animals were divided into two groups: cell-free scaffold and scaffold seeded with autologous chondrocytes. Two different surgical techniques were compared: in 12 animals, the implant was sutured to the capsule and to the meniscal ligament; in the other 12 animals, also a transtibial fixation of the horns was used. The animals were euthanized after 4 months. The specimens were assessed by gross inspection and histology. Results: All implants showed excellent capsular ingrowth at the periphery. Macroscopically, no difference was observed between cell-seeded and cell-free groups. Better implant appearance and integrity was observed in the group without transosseous horns fixation. Using the latter implantation technique, lower joint degeneration was observed in the cell-seeded group with respect to cell-free implants. The histological analysis indicated cellular infiltration and vascularization throughout the implanted constructs. Cartilaginous tissue formation was significantly more frequent in the cell-seeded constructs. Conclusion: The current study supports the potential of a novel HYAFF/polycaprolactone scaffold for total meniscal substitution. Seeding of the scaffolds with autologous chondrocytes provides some benefit in the extent of fibrocartilaginous tissue repair.

Original languageEnglish
Pages (from-to)1067-1080
Number of pages14
JournalTissue Engineering - Part A
Issue number6
Publication statusPublished - Jun 1 2008

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Biomedical Engineering
  • Biomaterials


Dive into the research topics of 'Tissue engineering for total meniscal substitution: Animal study in sheep model'. Together they form a unique fingerprint.

Cite this