Abstract
Original language | English |
---|---|
Journal | Front. Immunol. |
Volume | 11 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- adoptive T cell immunotherapy of cancer
- competition
- memory
- T cell
- tumor immunity
- adaptive immunity
- antineoplastic activity
- cancer immunotherapy
- carcinogenesis
- CD4+ T lymphocyte
- CD8+ T lymphocyte
- cell differentiation
- cell proliferation
- cell transfer
- clinical outcome
- cytokine production
- DNA damage
- glycolysis
- immune response
- immune system
- immunogenicity
- immunology
- innate immunity
- intestine flora
- knowledge
- malignant neoplasm
- mitochondrial biogenesis
- mitochondrial respiration
- overall survival
- regulatory T lymphocyte
- Review
- signal transduction
- T lymphocyte
- tumor growth
- tumor microenvironment
- vaccination
Fingerprint
Dive into the research topics of 'To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors: Frontiers in Immunology'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors : Frontiers in Immunology. / Mondino, A.; Manzo, T.
In: Front. Immunol., Vol. 11, 2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors
T2 - Frontiers in Immunology
AU - Mondino, A.
AU - Manzo, T.
N1 - Export Date: 17 March 2021 Correspondence Address: Mondino, A.; Division of Immunology, Italy; email: mondino.anna@hsr.it Funding details: StartUp 2018-21474, TRS-2016-00000373 Funding details: Associazione Italiana per la Ricerca sul Cancro, AIRC, IG 2014-15883, IG 2018-21763 Funding text 1: The authors wish to acknowledge the work of all those colleagues that we were not able to cite for space constraints. Funding. AM acknowledges the support of Associazione Italiana per la Ricerca sul Cancro (AIRC: IG 2014-15883 and IG 2018-21763) and of TRANSCAN (TRS-2016-00000373). TM is the recipient of a Start Up Grant from Associazione Italiana per la Ricerca sul Cancro (AIRC StartUp 2018-21474). References: Williams, M.A., Bevan, M.J., Effector and memory CTL differentiation (2007) Annu Rev Immunol, 25, pp. 171-192. , 17129182; Pepper, M., Jenkins, M.K., Origins of CD4+ effector and central memory T cells (2011) Nat Immunol, 12, pp. 467-471. , 21739668; Jameson, S.C., Masopust, D., Understanding subset diversity in T cell memory (2018) Immunity, 48, pp. 214-226. , 29466754; Busch, D.H., Fräßle, S.P., Sommermeyer, D., Buchholz, V.R., Riddell, S.R., Role of memory T cell subsets for adoptive immunotherapy (2016) Semin Immunol, 28, pp. 28-34. , 26976826; Hope, J.L., Stairiker, C.J., Bae, E.A., Otero, D.C., Bradley, L.M., Striking a balance-cellular and molecular drivers of memory T cell development and responses to chronic stimulation (2019) Front Immunol, 10 (1595). , 31379821; Martin, M.D., Badovinac, V.P., Defining memory CD8 T cell (2018) Front Immunol, 9 (2692). , 30515169; Cui, W., Kaech, S.M., Generation of effector CD8+ T cells and their conversion to memory T cells (2010) Immunol Rev, 236, pp. 151-166. , 20636815; Harty, J.T., Badovinac, V.P., Shaping and reshaping CD8+ T-cell memory (2008) Nat Rev Immunol, 8, pp. 107-119. , 18219309; Chang, J.T., Wherry, E.J., Goldrath, A.W., Molecular regulation of effector and memory T cell differentiation (2014) Nat Immunol, 15, pp. 1104-1115. , 25396352; Omilusik, K.D., Goldrath, A.W., Remembering to remember: T cell memory maintenance and plasticity (2019) Curr Opin Immunol, 58, pp. 89-97. , 31170601; Sallusto, F., Lenig, D., Förster, R., Lipp, M., Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions (1999) Nature, 401, pp. 708-712. , 10537110; Gattinoni, L., Speiser, D.E., Lichterfeld, M., Bonini, C., T memory stem cells in health and disease (2017) Nat Med, 23, pp. 18-27. , 28060797; Gattinoni, L., Lugli, E., Ji, Y., Pos, Z., Paulos, C.M., Quigley, M.F., A human memory T cell subset with stem cell-like properties (2011) Nat Med, 17, pp. 1290-1297. , 21926977; Lugli, E., Gattinoni, L., Roberto, A., Mavilio, D., Price, D.A., Restifo, N.P., Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells (2013) Nat Protoc, 8, pp. 33-42. , 23222456; Cieri, N., Camisa, B., Cocchiarella, F., Forcato, M., Oliveira, G., Provasi, E., IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors (2013) Blood, 121, pp. 573-584. , 23160470; Masopust, D., Vezys, V., Marzo, A.L., Lefrançois, L., Preferential localization of effector memory cells in nonlymphoid tissue (2014) J Immunol, 291, pp. 2413-2417. , 11264538; Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T., Jenkins, M.K., Visualizing the generation of memory CD4 T cells in the whole body (2001) Nature, 410, pp. 101-105. , 11242050; Gerlach, C., Moseman, E.A., Loughhead, S.M., Alvarez, D., Zwijnenburg, A.J., Waanders, L., The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis (2016) Immunity, 45, pp. 1270-1284. , 27939671; Gebhardt, T., Wakim, L.M., Eidsmo, L., Reading, P.C., Heath, W.R., Carbone, F.R., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus (2009) Nat Immunol, 10, pp. 524-530. , 19305395; Teijaro, J.R., Turner, D., Pham, Q., Wherry, E.J., Lefrançois, L., Farber, D.L., Cutting Edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection (2011) J Immunol, 187, pp. 5510-5514. , 22058417; Masopust, D., Choo, D., Vezys, V., Wherry, E.J., Duraiswamy, J., Akondy, R., Dynamic T cell migration program provides resident memory within intestinal epithelium (2010) J Exp Med, 207, pp. 553-564. , 20156972; Mami-Chouaib, F., Blanc, C., Corgnac, S., Hans, S., Malenica, I., Granier, C., Resident memory T cells, critical components in tumor immunology (2018) J Immunother Cancer, 6 (87). , 30180905; Amsen, D., Van Gisbergen, K.P.J.M., Hombrink, P., Van Lier, R.A.W., Tissue-resident memory T cells at the center of immunity to solid tumors (2018) Nat Immunol, 19, pp. 538-546. , 29777219; Schenkel, J.M., Masopust, D., Tissue-resident memory T cells (2014) Immunity, 41, pp. 886-897. , 25526304; Casey, K.A., Fraser, K.A., Schenkel, J.M., Moran, A., Abt, M.C., Beura, L.K., Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues (2012) J Immunol, 188, pp. 4866-4875. , 22504644; MacKay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., The developmental pathway for CD103+ CD8+ tissue-resident memory T cells of skin (2013) Nat Immunol, 14, pp. 1294-1301. , 24162776; Boutet, M., Gauthier, L., Leclerc, M., Gros, G., De Montpreville, V., Theret, N., β signaling intersects with CD103 integrin signaling to promote T-Lymphocyte accumulation and antitumor activity in the lung tumor microenvironment (2016) Cancer Res, 76, pp. 1757-1769. , 26921343; Bromley, S.K., Yan, S., Tomura, M., Kanagawa, O., Luster, A.D., Recirculating memory T cells are a unique subset of CD4 + T cells with a distinct phenotype and migratory pattern (2013) J Immunol, 190, pp. 970-976. , 23255361; Bergsbaken, T., Bevan, M.J., Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection (2015) Nat Immunol, 16, pp. 406-414. , 25706747; Topham, D.J., Reilly, E.C., Tissue-resident memory CD8+ T cells: From phenotype to function (2018) Front Immunol, 9 (515). , 29632527; Nguyen, Q.P., Deng, T.Z., Witherden, D.A., Goldrath, A.W., Origins of CD4+ circulating and tissue-resident memory T-cells (2019) Immunology, 157, pp. 3-12. , 30897205; White, J.T., Cross, E.W., Burchill, M.A., Danhorn, T., McCarter, M.D., Rosen, H.R., Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner (2016) Nat Commun, 7 (11291). , 27097762; Marusina, A.I., Ono, Y., Merleev, A.A., Shimoda, M., Ogawa, H., Wang, E.A., CD4+ virtual memory: antigen-inexperienced T cells reside in the naïve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity (2017) J Autoimmun, 77, pp. 76-88. , 27894837; Jameson, S.C., Lee, Y.J., Hogquist, K.A., Innate memory T cells (2015) Adv Immunol, 126, pp. 173-213. , 25727290; Miller, C.H., Klawon, D.E.J., Zeng, S., Lee, V., Socci, N.D., Savage, P.A., Eomes identifies thymic precursors of self-specific memory-phenotype CD8+ T cells (2020) Nat Immunol, 21, pp. 567-577. , 32284593; Chacon, J.A., Wu, R.C., Sukhumalchandra, P., Molldrem, J.J., Sarnaik, A., Pilon-Thomas, S., Co-stimulation through 4-1BB/cd137 improves the expansion and function of CD8+ melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy (2013) PLoS One, 8 (e60031). , 23560068; Mempel, T.R., Henrickson, S.E., Von Andrian, U.H., T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases (2004) Nature, 427, pp. 154-159. , 14712275; Curtsinger, J.M., Schmidt, C.S., Mondino, A., Lins, D.C., Kedl, R.M., Jenkins, M.K., Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells (1999) J Immunol, 162, pp. 3256-3262; Obst, R., Van Santen, H.M., Mathis, D., Benoist, C., Antigen persistence is required throughout the expansion phase of a CD4+ T cell response (2005) J Exp Med, 201, pp. 1555-1565. , 15897273; Kim, C., Wilson, T., Fischer, K.F., Williams, M.A., Sustained interactions between T cell receptors and antigens promote the differentiation of CD4+ memory T cells (2013) Immunity, 39, pp. 508-520. , 24054329; Henrickson, S.E., Perro, M., Loughhead, S.M., Senman, B., Stutte, S., Quigley, M., Antigen availability determines CD8+ T cell-dendritic cell interaction kinetics and memory fate decisions (2013) Immunity, 39, pp. 496-507. , 24054328; Lanzavecchia, A., Sallusto, F., Progressive differentiation and selection of the fittest in the immune response (2002) Nat Rev Immunol, 2, pp. 982-987. , 12461571; Mehlhop-Williams, E.R., Bevan, M.J., Memory CD8+ T cells exhibit increased antigen threshold requirements for recall proliferation (2014) J Exp Med, 211, pp. 345-356. , 24493801; Croft, M., The role of TNF superfamily members in T-cell function and diseases (2009) Nat Rev Immunol, 9, pp. 271-285. , 19319144; Croft, M., Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? (2003) Nat Rev Immunol, 3, pp. 609-620. , 12974476; June, C.H., O’Connor, R.S., Kawalekar, O.U., Ghassemi, S., Milone, M.C., CAR T cell immunotherapy for human cancer (2018) Science, 359, pp. 1361-1365. , 29567707; Kawalekar, O.U., O’Connor, R.S., Fraietta, J.A., Guo, L., McGettigan, S.E., Posey, A.D., Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells (2016) Immunity, 44, pp. 380-390. , 26885860; Mescher, M.F., Curtsinger, J.M., Agarwal, P., Casey, K.A., Gerner, M., Hammerbeck, C.D., Signals required for programming effector and memory development by CD8+ T cells (2006) Immunol Rev, 211, pp. 81-92. , 16824119; Pepper, M., Pagán, A.J., Igyártó, B.Z., Taylor, J.J., Jenkins, M.K., opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells (2011) Immunity, 35, pp. 583-595. , 22018468; Choi, Y.S., Yang, J.A., Yusuf, I., Johnston, R.J., Greenbaum, J., Peters, B., Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory (2013) J Immunol, 190, pp. 4014-4026. , 23487426; Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H., Allison, J.P., CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones (1992) Nature, 356, pp. 607-609. , 1313950; Schietinger, A., Greenberg, P.D., Tolerance and exhaustion: defining mechanisms of T cell dysfunction (2014) Trends Immunol, 35, pp. 51-60. , 24210163; Reading, J.L., Gálvez-Cancino, F., Swanton, C., Lladser, A., Peggs, K.S., Quezada, S.A., The function and dysfunction of memory CD8 + T cells in tumor immunity (2018) Immunol Rev, 283, pp. 194-212. , 29664561; Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R., Ahmed, R., Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment (2003) J Virol, 77, pp. 4911-4927. , 12663797; McLane, L.M., Abdel-Hakeem, M.S., Wherry, E.J., CD8 T cell exhaustion during chronic viral infection and cancer (2019) Annu Rev Immunol, 37, pp. 457-495. , 30676822; van der Leun, A.M., Thommen, D.S., Schumacher, T.N., CD8+ T cell states in human cancer: insights from single-cell analysis (2020) Nat Rev Cancer, 20, pp. 218-232. , 32024970; Barber, D.L., Wherry, E.J., Masopust, D., Zhu, B., Allison, J.P., Sharpe, A.H., Restoring function in exhausted CD8 T cells during chronic viral infection (2006) Nature, 439, pp. 682-687. , 16382236; Zajac, A.J., Blattman, J.N., Murali-Krishna, K., Sourdive, D.J.D., Suresh, M., Altman, J.D., Viral immune evasion due to persistence of activated T cells without effector function (1998) J Exp Med, 188, pp. 2205-2213. , 9858507; Gallimore, A., Glithero, A., Godkin, A., Tissot, A.C., Plückthun, A., Elliott, T., Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes (1998) J Exp Med, 187, pp. 1383-1393. , 9565631; Day, C.L., Kaufmann, D.E., Kiepiela, P., Brown, J.A., Moodley, E.S., Reddy, S., PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression (2006) Nature, 443, pp. 350-354. , 16921384; Lechner, F., Wong, D.K.H., Dunbar, P.R., Chapman, R., Chung, R.T., Dohrenwend, P., Analysis of successful immune responses in persons infected with hepatitis C virus (2000) J Exp Med, 191, pp. 1499-1512. , 10790425; Ye, B., Liu, X., Li, X., Kong, H., Tian, L., Chen, Y., T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance (2015) Cell Death Dis, 6 (e1694). , 25789969; Sharpe, A.H., Wherry, E.J., Ahmed, R., Freeman, G.J., The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection (2007) Nat Immunol, 8, pp. 239-245. , 17304234; McKinney, E.F., Lee, J.C., Jayne, D.R.W., Lyons, P.A., Smith, K.G.C., T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection (2015) Nature, 523, pp. 612-616. , 26123020; Pauken, K.E., Wherry, E.J., Overcoming T cell exhaustion in infection and cancer (2015) Trends Immunol, 36, pp. 265-276. , 25797516; Josefowicz, S.Z., Lu, L.-F., Rudensky, A.Y., Regulatory T cells: mechanisms of differentiation and function (2012) Annu Rev Immunol, 30, pp. 531-564. , 22224781; Bauer, C.A., Kim, E.Y., Marangoni, F., Carrizosa, E., Claudio, N.M., Mempel, T.R., Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction (2014) J Clin Invest, 124, pp. 2425-2440. , 24812664; Ohue, Y., Nishikawa, H., Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? (2019) Cancer Sci, 110, pp. 2080-2089. , 31102428; Smazynski, J., Webb, J.R., Resident memory-like tumor-infiltrating lymphocytes (TILRM): latest players in the immuno-oncology repertoire (2018) Front Immunol, 9 (174). , 30093907; Oja, A.E., Piet, B., Helbig, C., Stark, R., Van Der Zwan, D., Blaauwgeers, H., Trigger-happy resident memory CD4 + T cells inhabit the human lungs (2018) Mucosal Immunol, 11, pp. 654-667. , 29139478; Ariotti, S., Hogenbirk, M.A., Dijkgraaf, F.E., Visser, L.L., Hoekstra, M.E., Song, J.Y., Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert (2014) Science, 346, pp. 101-105. , 25278612; Djenidi, F., Adam, J., Goubar, A., Durgeau, A., Meurice, G., de Montpréville, V., CD8 + CD103 + tumor–infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients (2015) J Immunol, 194, pp. 3475-3486. , 25725111; Webb, J.R., Milne, K., Watson, P., DeLeeuw, R.J., Nelson, B.H., Tumor-infiltrating lymphocytes expressing the tissue resident memory marker cd103 are associated with increased survival in high-grade serous ovarian cancer (2014) Clin Cancer Res, 20, pp. 434-444. , 24190978; Boddupalli, C.S., Bar, N., Kadaveru, K., Krauthammer, M., Pornputtapong, N., Mai, Z., Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells (2016) JCI Insight, 1 (e88955). , 28018970; Webb, J.R., Milne, K., Nelson, B.H., PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer (2015) Cancer Immunol Res, 3, pp. 926-935. , 25957117; Oja, A.E., Piet, B., Van Der Zwan, D., Blaauwgeers, H., Mensink, M., De Kivit, S., Functional heterogeneity of CD4+ tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC (2018) Front Immunol, 9 (2654). , 30505306; Quezada, S.A., Simpson, T.R., Peggs, K.S., Merghoub, T., Vider, J., Fan, X., Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts (2010) J Exp Med, 207, pp. 637-650. , 20156971; Friedman, K.M., Prieto, P.A., Devillier, L.E., Gross, C.A., Yang, J.C., Wunderlich, J.R., Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes (2012) J Immunother, 35, pp. 400-408. , 22576345; Blanc, C., Hans, S., Tran, T., Granier, C., Saldman, A., Anson, M., Targeting resident memory T cells for cancer immunotherapy (2018) Front Immunol, 9 (1722). , 30100906; Edwards, J., Wilmott, J.S., Madore, J., Gide, T.N., Quek, C., Tasker, A., CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment (2018) Clin Cancer Res, 24, pp. 3036-3045. , 29599411; Czechowicz, A., Weissman, I.L., Purified hematopoietic stem cell transplantation: the next generation of blood and immune replacement (2011) Hematol Oncol Clin North Am, 30, pp. 159-171. , 21236391; Demirer, T., Barkholt, L., Blaise, D., Pedrazzoli, P., Aglietta, M., Carella, A.M., Transplantation of allogeneic hematopoietic stem cells: an emerging treatment modality for solid tumors (2008) Nat Clin Pract Oncol, 5, pp. 256-267. , 18398414; D’Souza, A., Lee, S., Zhu, X., Pasquini, M., Current use and trends in hematopoietic cell transplantation in the united states (2017) Biol Blood Marrow Transplant, 26, pp. e177-e182. , 28606646; Dickinson, A.M., Wang, X.N., Sviland, L., Vyth-Dreese, F.A., Jackson, G.H., Schumacher, T.N.M., In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens (2002) Nat Med, 8, pp. 410-414. , 11927949; Yang, J.C., Rosenberg, S.A., Adoptive T-cell therapy for cancer (2016) Adv Immunol, 130, pp. 279-294. , 26923004; Hammerl, D., Rieder, D., Martens, J.W.M., Trajanoski, Z., Debets, R., Adoptive T cell therapy: new avenues leading to safe targets and powerful allies (2018) Trends Immunol, 39, pp. 921-936. , 30309702; Klebanoff, C.A., Gattinoni, L., Restifo, N.P., Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? (2012) J Immunother, 35, pp. 651-660. , 23090074; Xu, Y., Zhang, M., Ramos, C.A., Durett, A., Liu, E., Dakhova, O., Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15 (2014) Blood, 123, pp. 3750-3759. , 24782509; Wang, X., Naranjo, A., Brown, C.E., Bautista, C., Wong, C.W., Chang, W.C., Phenotypic and functional attributes of lentivirus-modified CD19-specific Human CD8+ central memory T cells manufactured at clinical scale (2012) J Immunother, 35, pp. 689-701. , 23090078; Terakura, S., Yamamoto, T.N., Gardner, R.A., Turtle, C.J., Jensen, M.C., Riddell, S.R., Generation of CD19-chimeric antigen receptor modified CD8 + T cells derived from virus-specific central memory T cells (2012) Blood, 119, pp. 72-82. , 22031866; Sommermeyer, D., Hudecek, M., Kosasih, P.L., Gogishvili, T., Maloney, D.G., Turtle, C.J., Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo (2016) Leukemia, 30, pp. 492-500. , 26369987; Crompton, J.G., Sukumar, M., Restifo, N.P., Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy (2014) Immunol Rev, 257, pp. 264-276. , 24329803; Hinrichs, C.S., Spolski, R., Paulos, C.M., Gattinoni, L., Kerstann, K.W., Palmer, D.C., IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy (2008) Blood, 111, pp. 5326-5333. , 18276844; Zhou, J., Jin, L., Wang, F., Zhang, Y., Liu, B., Zhao, T., Chimeric antigen receptor T (CAR-T) cells expanded with IL-7/IL-15 mediate superior antitumor effects (2019) Protein Cell, 10, pp. 764-769. , 31250350; Pilipow, K., Roberto, A., Roederer, M., Waldmann, T.A., Mavilio, D., Lugli, E., IL15 and T-cell stemness in T-cell-based cancer immunotherapy (2015) Cancer Res, 75, pp. 5187-5193. , 26627006; Urak, R., Walter, M., Lim, L., Wong, C.L.W., Budde, L.E., Thomas, S., Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy (2017) J Immunother Cancer, 5 (26). , 28331616; Klebanoff, C.A., Crompton, J.G., Leonardi, A.J., Yamamoto, T.N., Chandran, S.S., Eil, R.L., Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy (2017) JCI Insight, 2 (e95103). , 29212954; Chou, J., Voong, L.N., Mortales, C.L., Towlerton, A.M.H., Pollack, S.M., Chen, X., Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer (2012) J Immunother, 35, pp. 131-141. , 22306901; Kavazoviæ, I., Poliæ, B., Wensveen, F.M., Cheating the hunger games: mechanisms controlling clonal diversity of CD8 effector and memory populations (2018) Front Immunol, 9 (2831). , 30555492; Moon, J.J., Chu, H.H., Pepper, M., McSorley, S.J., Jameson, S.C., Kedl, R.M.M., Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude (2007) Immunity, 27, pp. 203-213. , 17707129; Obar, J.J., Khanna, K.M., Lefrançois, L., Endogenous Naive CD8+ T cell precursor frequency regulates primary and memory responses to infection (2008) Immunity, 28, pp. 859-869. , 18499487; Leitão, C., Freitas, A.A., Garcia, S., The role of TCR specificity and clonal competition during reconstruction of the peripheral T cell pool (2009) J Immunol, 182, pp. 5232-5239. , 19380769; Hataye, J., Moon, J.J., Khoruts, A., Reilly, C., Jenkins, M.K., Naïve and memory CD4+ T cell survival controlled by clonal abundance (2006) Science, 312, pp. 114-116. , 16513943; Kedl, R.M., Rees, W.A., Hildeman, D.A., Schaefer, B., Mitchell, T., Kappler, J., T cells compete for access to antigen-bearing antigen-presenting cells (2000) J Exp Med, 192, pp. 1105-1114. , 11034600; Quiel, J., Caucheteux, S., Laurence, A., Singh, N.J., Bocharov, G., Ben-Sasson, S.Z., Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number (2011) Proc Natl Acad Sci USA, 108, pp. 3312-3317. , 21292989; Smith, L.K., Boukhaled, G.M., Condotta, S.A., Mazouz, S., Guthmiller, J.J., Vijay, R., Interleukin-10 directly inhibits CD8+ T Cell function by enhancing N-Glycan branching to decrease antigen sensitivity (2018) Immunity, 48, pp. 299-312.e5. , 29396160; Badovinac, V.P., Haring, J.S., Harty, J.T., Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection (2007) Immunity, 26, pp. 827-841. , 17555991; Blair, D.A., Lefrançois, L., Increased competition for antigen during priming negatively impacts the generation of memory CD4 T cells (2007) Proc Natl Acad Sci USA, 104, pp. 15045-15050. , 17827281; Marzo, A.L., Klonowski, K.D., Le Bon, A., Borrow, P., Tough, D.F., Lefrançois, L., Initial T cell frequency dictates memory CD8+ T cell lineage commitment (2005) Nat Immunol, 6, pp. 793-799. , 16025119; Rizzuto, G.A., Merghoub, T., Hirschhorn-Cymerman, D., Liu, C., Lesokhin, A.M., Sahawneh, D., Self-antigen-specifc CD8 + T cell precursor frequency determines the quality of the antitumor immune response (2009) J Exp Med, 206, pp. 849-866. , 19332877; Manzo, T., Sturmheit, T., Basso, V., Petrozziello, E., Michelini, R.H., Riba, M., T cells redirected to a minor histocompatibility antigen instruct intratumoral TNFα expression and empower adoptive cell therapy for solid tumors (2017) Cancer Res, 77, pp. 658-671. , 27872095; Khazen, R., Müller, S., Lafouresse, F., Valitutti, S., Cussat-Blanc, S., Sequential adjustment of cytotoxic T lymphocyte densities improves efficacy in controlling tumor growth (2019) Sci Rep, 9. , 120308, 31444380; Malandro, N., Budhu, S., Kuhn, N.F., Liu, C., Murphy, J.T., Cortez, C., Clonal abundance of tumor-specific CD4+ T cells potentiates efficacy and alters susceptibility to exhaustion (2016) Immunity, 44, pp. 179-193. , 26789923; Turtle, C.J., Hanafi, L.A., Berger, C., Hudecek, M., Pender, B., Robinson, E., Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells (2016) Sci Transl Med, 8 (355ra116). , 27605551; Singh, N.J., Bando, J.K., Schwartz, R.H., Subsets of nonclonal neighboring CD4+ T cells specifically regulate the frequency of individual antigen-reactive T cells (2012) Immunity, 37, pp. 735-746. , 23021952; Becker, T.C., John Wherry, E., Boone, D., Murali-Krishna, K., Antia, R., Ma, A., Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells (2002) J Exp Med, 195, pp. 1541-1548. , 12070282; Carrio, R., Rolle, C.E., Malek, T.R., Non-redundant role for IL-7R signaling for the survival of CD8+ memory T cells (2007) Eur J Immunol, 37, pp. 3078-3088. , 17935075; Malherbe, L., Hausl, C., Teyton, L., McHeyzer-Williams, M.G., Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties (2004) Immunity, 21, pp. 669-679. , 15539153; Savage, P.A., Boniface, J.J., Davis, M.M., A kinetic basis for T cell receptor repertoire selection during an immune response (1999) Immunity, 10, pp. 485-492; Sierro, S., Rothkopf, R., Klenerman, P., Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection (2005) Eur J Immunol, 35, pp. 1113-1123. , 15756645; Snyder, C.M., Cho, K.S., Bonnett, E.L., van Dommelen, S., Shellam, G.R., Hill, A.B., Memory inflation during chronic viral infection is maintained by continuous production of short-lived (2008) Funct T Cells Immun, 29, pp. 650-659. , 18957267; Karrer, U., Sierro, S., Wagner, M., Oxenius, A., Hengel, H., Koszinowski, U.H., Memory inflation: continous accumulation of antiviral CD8 + T cells over time (2003) J Immunol, 170, pp. 2022-2029. , 26787722; Morabito, K.M., Ruckwardt, T.J., Bar-Haim, E., Nair, D., Moin, S.M., Redwood, A.J., Memory inflation drives tissue-resident memory CD8+ T cell maintenance in the lung after intranasal vaccination with murine cytomegalovirus (2018) Front Immunol, 9 (1861). , 30154789; Schober, K., Voit, F., Grassmann, S., Müller, T.R., Eggert, J., Jarosch, S., Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection (2020) Nat Immunol, 21, pp. 434-441. , 32205883; Poschke, I.C., Hassel, J.C., Rodriguez Ehrenfried, A., Lindner, K.A.M., Heras-Murillo, I., Appel, L.M., The outcome of ex vivo TIL expansion is highly influenced by spatial heterogeneity of the tumor T-cell repertoire and differences in intrinsic in vitro growth capacity between T-cell clones Clin Cancer Res, , 32303540, (2020). 26:4289–301; Turula, H., Smith, C.J., Grey, F., Zurbach, K.A., Snyder, C.M., Competition between T cells maintains clonal dominance during memory inflation induced by MCMV (2013) Eur J Immunol, 43, pp. 1252-1263. , 23404526; Smith, C., Corvino, D., Beagley, L., Rehan, S., Neller, M.A., Crooks, P., T cell repertoire remodeling following post-transplant T cell therapy coincides with clinical response (2019) J Clin Invest, 129, pp. 5020-5032. , 31415240; Walsh, S.R., Simovic, B., Chen, L., Bastin, D., Nguyen, A., Stephenson, K., Endogenous T cells prevent tumor immune escape following adoptive T cell therapy (2019) J Clin Invest, 129, pp. 5400-5410. , 31682239; Long, A.H., Haso, W.M., Shern, J.F., Wanhainen, K.M., Murgai, M., Ingaramo, M., 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors (2015) Nat Med, 21, pp. 581-590. , 25939063; Ajina, A., Maher, J., Strategies to address chimeric antigen receptor tonic signaling (2018) Mol Cancer Ther, 17, pp. 1795-1815. , 30181329; Bridgeman, J.S., Ladell, K., Sheard, V.E., Miners, K., Hawkins, R.E., Price, D.A., CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: Implications for optimization of receptor structure for adoptive cell therapy (2014) Clin Exp Immunol, 175, pp. 258-267. , 24116999; Osborne, L.C., Abraham, N., Regulation of memory T cells by γc cytokines (2010) Cytokine, 50, pp. 105-113. , 19879771; Surh, C.D., Sprent, J., Homeostasis of naive and memory T cells (2008) Immunity, 29, pp. 848-862. , 19100699; Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J., Marrack, P., Control of homeostasis of CD8+ memory T cells by opposing cytokines (2000) Science, 288, pp. 675-678. , 10784451; Schluns, K.S., Kieper, W.C., Jameson, S.C., Lefrançois, L., Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo (2000) Nat Immunol, 1, pp. 426-432. , 11062503; Witherden, D., Van Oers, N., Waltzinger, C., Weiss, A., Benoist, C., Mathis, D., Tetracycline-controllable selection of CD4+ T cells: Half-life and survival signals in the absence of major histocompatibility complex class II molecules (2000) J Exp Med, 191, pp. 355-364. , 10637279; Kirberg, J., Berns, A., Von Boehmer, H., Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules (1997) J Exp Med, 186, pp. 1269-1275. , 9334366; van Leeuwen, E.M., Sprent, J., Surh, C.D., Generation and maintenance of memory CD4+ T Cells (2009) Curr Opin Immunol, 21, pp. 167-172. , 19282163; Pepper, M., Linehan, J.L., Pagán, A.J., Zell, T., Dileepan, T., Cleary, P.P., Different routes of bacterial infection induce long-lived T H 1 memory cells and short-lived T H 17 cells (2010) Nat Immunol, 11, pp. 83-89. , 19935657; Yee, C., Thompson, J.A., Byrd, D., Riddell, S.R., Roche, P., Celis, E., Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells (2002) Proc Natl Acad Sci USA, 99, pp. 16168-16173. , 12427970; Rosenberg, S.A., Sportès, C., Ahmadzadeh, M., Fry, T.J., Ngo, L.T., Schwarz, S.L., IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells (2006) J Immunother, 29, pp. 313-319; Gattinoni, L., Finkelstein, S.E., Klebanoff, C.A., Antony, P.A., Palmer, D.C., Spiess, P.J., Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells (2005) J Exp Med, 202, pp. 907-912. , 16203864; Berger, S.C., Berger, M., Hackman, R.C., Gough, M., Elliott, C., Jensen, M.C., Safety and immunologic effects of IL-15 administration in nonhuman primates (2009) Blood, 114, pp. 2417-2426. , 19605850; Li, Y., Bleakley, M., Yee, C., IL-21 Influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response (2005) J Immunol, 175, pp. 2261-2269. , 16081794; Dwyer, C.J., Knochelmann, H.M., Smith, A.S., Wyatt, M.M., Rivera, G.O.R., Arhontoulis, D.C., Fueling cancer immunothery with common gamma chain cytokines (2019) Front Immunol, 10 (263). , 30842774; Wrzesinski, C., Paulos, C.M., Gattinoni, L., Palmer, D.C., Kaiser, A., Yu, Z., Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8+ T cells (2007) J Clin Invest, 117, pp. 492-501. , 17273561; Wrzesinski, C., Restifo, N.P., Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy (2005) Curr Opin Immunol, 17, pp. 195-201. , 15766681; Brentjens, R.J., Rivière, I., Park, J.H., Davila, M.L., Wang, X., Stefanski, J., Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias (2011) Blood, 118, pp. 4817-4828. , 21849486; Turtle, C.J., Hanafi, L.A., Berger, C., Gooley, T.A., Cherian, S., Hudecek, M., CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients (2016) J Clin Invest, 126, pp. 2123-2138. , 27111235; Hirayama, A.V., Gauthier, J., Hay, K.A., Voutsinas, J.M., Wu, Q., Gooley, T., The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells (2019) Blood, 133, pp. 1876-1887. , 30782611; Dudley, M.E., Wunderlich, J.R., Robbins, P.F., Yang, J.C., Hwu, P., Schwartzentruber, D.J., Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes (2002) Science, 298, pp. 850-854. , 12242449; Restifo, N.P., Dudley, M.E., Rosenberg, S.A., Adoptive immunotherapy for cancer: harnessing the T cell response (2012) Nat Rev Immunol, 12, pp. 269-281. , 22437939; Xu, A., Bhanumathy, K.K., Wu, J., Ye, Z., Freywald, A., Leary, S.C., IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia (2016) Cell Biosci, 6 (30). , 27158441; van der Windt, G.J.W., Everts, B., Chang, C.H., Curtis, J.D., Freitas, T.C., Amiel, E., Mitochondrial respiratory capacity is a critical regulator of CD8 + T cell memory development (2012) Immunity, 36, pp. 68-78. , 22206904; Ding, Z.C., Habtetsion, T., Cao, Y., Li, T., Liu, C., Kuczma, M., Adjuvant IL-7 potentiates adoptive T cell therapy by amplifying and sustaining polyfunctional antitumor CD4+ T cells (2017) Sci Rep, 7 (12168). , 28939858; Pearce, E.L., Walsh, M.C., Cejas, P.J., Harms, G.M., Shen, H., Wang, L.S., Enhancing CD8 T-cell memory by modulating fatty acid metabolism (2009) Nature, 460, pp. 103-107. , 19494812; Araki, K., Turner, A.P., Shaffer, V.O., Gangappa, S., Keller, S.A., Bachmann, M.F., mTOR regulates memory CD8 T-cell differentiation (2009) Nature, 460, pp. 108-112. , 19543266; Van Der Windt, G.J.W., O’Sullivan, D., Everts, B., Huang, S.C.C., Buck, M.D., Curtis, J.D., CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability (2013) Proc Natl Acad Sci USA, 110, pp. 14336-14341. , 23940348; Chang, C.H., Qiu, J., O’Sullivan, D., Buck, M.D., Noguchi, T., Curtis, J.D., Metabolic competition in the tumor microenvironment is a driver of cancer progression (2015) Cell, 162, pp. 1229-1241. , 26321679; Ho, P.C., Bihuniak, J.D., MacIntyre, A.N., Staron, M., Liu, X., Amezquita, R., Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses (2015) Cell, 162, pp. 1217-1228. , 26321681; Ye, J., Peng, G., Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy (2015) Oncoimmunology, 4 (e994398). , 25949919; Sinclair, L.V., Rolf, J., Emslie, E., Shi, Y.B., Taylor, P.M., Cantrell, D.A., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation (2013) Nat Immunol, 14, pp. 500-508. , 23525088; Hosios, A.M., Hecht, V.C., Danai, L.V., Johnson, M.O., Rathmell, J.C., Steinhauser, M.L., Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells (2016) Dev Cell, 36, pp. 540-549. , 26954548; Kishton, R.J., Sukumar, M., Restifo, N.P., Metabolic regulation of T cell longevity and function in tumor immunotherapy (2017) Cell Metab, 26, pp. 94-109. , 28683298; O’Sullivan, D., vanderWindt, G.W.J., Huang, S.C.C., Curtis, J.D., Chang, C.H., Buck, M.D.L., Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development (2014) Immunity, 41, pp. 75-88. , 25001241; Pan, Y., Tian, T., Park, C.O., Lofftus, S.Y., Mei, S., Liu, X., Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism (2017) Nature, 543, pp. 252-256. , 28219080; Manzo, T., Prentice, B.M., Anderson, K.G., Raman, A., Schalck, A., Codreanu, G.S., Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells (2020) J Exp Med, 217 (e20191920). , 32491160; Crittenden, M.R., Zebertavage, L., Kramer, G., Bambina, S., Friedman, D., Troesch, V., Tumor cure by radiation therapy and checkpoint inhibitors depends on pre-existing immunity (2018) Sci Rep, 8 (7012). , 29725089; Rosato, P.C., Wijeyesinghe, S., Stolley, J.M., Nelson, C.E., Davis, R.L., Manlove, L.S., Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy (2019) Nat Commun, 10 (567). , 30718505; Chen, P.L., Roh, W., Reuben, A., Cooper, Z.A., Spencer, C.N., Prieto, P.A., Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade (2016) Cancer Discov, 6, pp. 827-837. , 27301722; Taube, J.M., Unleashing the immune system: PD-1 and PD-Ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade (2014) Oncoimmunology, 3 (e963413). , 25914862; Jenq, R.R., Curran, M.A., Goldberg, G.L., Liu, C., Allison, J.P., van den Brink, M.R.M., Repertoire enhancement with adoptively transferred female lymphocytes controls the growth of pre-implanted murine prostate cancer (2012) PLoS One, 7 (e35222). , 22493742; Menares, E., Gálvez-Cancino, F., Cáceres-Morgado, P., Ghorani, E., López, E., Díaz, X., Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells (2019) Nat Commun, 10 (4401). , 31562311; Manzo, T., Sturmheit, T., Basso, V., Petrozziello, E., Hess Michelini, R., Riba, M., T cells redirected to a minor histocompatibility antigen instruct intratumoral TNFα expression and empower adoptive cell therapy for solid tumors (2017) Cancer Res, 77, pp. 658-671. , 27872095; Hess Michelini, R., Freschi, M., Manzo, T., Jachetti, E., Degl’Innocenti, E., Grioni, M., Concomitant tumor and minor histocompatibility antigen-specific immunity initiate rejection and maintain remission from established spontaneous solid tumors (2010) Cancer Res, 70, pp. 3505-3514. , 20388780; Hess Michelini, R., Manzo, T., Sturmheit, T., Basso, V., Rocchi, M., Freschi, M., Vaccine-instructed intratumoral IFN-γ enables regression of autochthonous mouse prostate cancer in allogeneic T-cell transplantation (2013) Cancer Res, 73, pp. 4641-4652. , 23749644; Elia, A.R., Grioni, M., Basso, V., Curnis, F., Freschi, M., Corti, A., Targeting tumor vasculature with TNF leads effector t cells to the tumor and enhances therapeutic efficacy of immune checkpoint blockers in combination with adoptive cell therapy (2018) Clin Cancer Res, 24, pp. 2171-2181. , 29490991; Ma, L., Dichwalkar, T., Chang, J.Y.H., Cossette, B., Garafola, D., Zhang, A.Q., Enhanced CAR–T cell activity against solid tumors by vaccine boosting through the chimeric receptor (2019) Science, 365, pp. 162-168. , 31296767; Maurice, N.J., McElrath, M.J., Andersen-Nissen, E., Frahm, N., Prlic, M., CXCR3 enables recruitment and site-specific bystander activation of memory CD8+ T cells (2019) Nat Commun, 10 (4987). , 31676770; Simoni, Y., Becht, E., Fehlings, M., Loh, C.Y., Koo, S.L., Teng, K.W.W., Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates (2018) Nature, 557, pp. 575-579. , 29769722; Martin, M.D., Jensen, I.J., Ishizuka, A.S., Lefebvre, M., Shan, Q., Xue, H.H., Bystander responses impact accurate detection of murine and human antigen-specific CD8+ T cells (2019) J Clin Invest, 129, pp. 3894-3908. , 31219804; Nelson, C.E., Thompson, E.A., Quarnstrom, C.F., Fraser, K.A., Seelig, D.M., Bhela, S., Robust iterative stimulation with self-antigens overcomes CD8+ T cell tolerance to self- and tumor antigens (2019) Cell Rep, 28, pp. 3092-104.e5. , 31533033; Erkes, D.A., Smith, C.J., Wilski, N.A., Caldeira-Dantas, S., Mohgbeli, T., Snyder, C.M., Virus-specific CD8 + T cells infiltrate melanoma lesions and retain function independently of PD-1 expression (2017) J Immunol, 198, pp. 2979-2988. , 28202614; Richer, M.J., Nolz, J.C., Harty, J.T., Pathogen-specific inflammatory milieux tune the antigen sensitivity of CD8+ T cells by enhancing T cell receptor signaling (2013) Immunity, 38, pp. 140-152. , 23260194; Chmielewski, M., Kopecky, C., Hombach, A.A., Abken, H., IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression (2011) Cancer Res, 71, pp. 5697-5706. , 21742772; Kunert, A., Chmielewski, M., Wijers, R., Berrevoets, C., Abken, H., Debets, R., Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors (2017) Oncoimmunology, 7 (e1378842). , 29296541; Wucherpfennig, K.W., Strominger, J.L., Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein (1995) Cell, 80, pp. 695-705; Haluszczak, C., Akue, A.D., Hamilton, S.E., Johnson, L.D.S., Pujanauski, L., Teodorovic, L., The antigen-specific CD8 + T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion (2009) J Exp Med, 206, pp. 435-448. , 19188498; White, J.T., Cross, E.W., Kedl, R.M., Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them (2017) Nat Rev Immunol, 17, pp. 391-400. , 28480897; Yang, J., Huck, S.P., McHugh, R.S., Hermans, I.F., Ronchese, F., Perforin-dependent elimination of dendritic cells regulates the expansion of antigen-specific CD8+ T cells in vivo (2006) Proc Natl Acad Sci USA, 103, pp. 147-152. , 16373503; Klenerman, P., Hill, A., T cells and viral persistence: lessons from diverse infections (2005) Nat Immunol, 6, pp. 873-879. , 16116467; Zimmermann, V.S., Casati, A., Schiering, C., Caserta, S., Hess Michelini, R., Basso, V., Tumors hamper the immunogenic competence of CD4 + T cell-directed dendritic cell vaccination (2007) J Immunol, 179, pp. 2899-2909. , 17709504; Liu, X., Mo, W., Ye, J., Li, L., Zhang, Y., Hsueh, E.C., Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition (2018) Nat Commun, 9 (249). , 29339767; D’Onofrio, A., A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences (2005) Phys D Nonlinear Phenom, 208, pp. 220-235; Kuhn, N.F., Purdon, T.J., van Leeuwen, D.G., Lopez, A.V., Curran, K.J., Daniyan, A.F., CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response (2019) Cancer Cell, 35, pp. 473-88.e6. , 30889381
PY - 2020
Y1 - 2020
N2 - The generation of immunological memory is a hallmark of adaptive immunity by which the immune system “remembers” a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also “bad memories”—in the form of antigen-experienced T cell subsets—co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy. © Copyright © 2020 Mondino and Manzo.
AB - The generation of immunological memory is a hallmark of adaptive immunity by which the immune system “remembers” a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also “bad memories”—in the form of antigen-experienced T cell subsets—co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy. © Copyright © 2020 Mondino and Manzo.
KW - adoptive T cell immunotherapy of cancer
KW - competition
KW - memory
KW - T cell
KW - tumor immunity
KW - adaptive immunity
KW - antineoplastic activity
KW - cancer immunotherapy
KW - carcinogenesis
KW - CD4+ T lymphocyte
KW - CD8+ T lymphocyte
KW - cell differentiation
KW - cell proliferation
KW - cell transfer
KW - clinical outcome
KW - cytokine production
KW - DNA damage
KW - glycolysis
KW - immune response
KW - immune system
KW - immunogenicity
KW - immunology
KW - innate immunity
KW - intestine flora
KW - knowledge
KW - malignant neoplasm
KW - mitochondrial biogenesis
KW - mitochondrial respiration
KW - overall survival
KW - regulatory T lymphocyte
KW - Review
KW - signal transduction
KW - T lymphocyte
KW - tumor growth
KW - tumor microenvironment
KW - vaccination
U2 - 10.3389/fimmu.2020.01915
DO - 10.3389/fimmu.2020.01915
M3 - Article
VL - 11
JO - Front. Immunol.
JF - Front. Immunol.
SN - 1664-3224
ER -