Topical application of preparations containing DNA repair enzymes prevents ultraviolet-induced telomere shortening and c-FOS proto-oncogene hyperexpression in human skin: An experimental pilot study

Enzo Emanuele, Velimir Altabas, Karmela Altabas, Enzo Berardesca

Research output: Contribution to journalArticle

Abstract

The exposure to ultraviolet radiation (UVR) is one of the most important risk factors for skin aging and increases the risk of malignant transformation. Telomere shortening and an altered expression of the proto-oncogene c-FOS are among the key molecular mechanisms associated with photoaging and tumorigenesis. Photolyase from A. nidulans and endonuclease from M. luteus are xenogenic DNA repair enzymes which can reverse the molecular events associated with skin aging and carcinogenosis caused by UVR exposure. Therefore, the purpose of this study was to investigate whether the topical application of preparations containing DNA repair enzymes may prevent UVR-induced acute telomere shortening and FOS gene hyperexpression in human skin biopsies. Twelve volunteers (Fitzpatrick skin types I and II) were enrolled for this experimental study, and six circular areas (10 mm diameter) were marked out on the nonexposed lower back of each participant. One site was left untreated (site 1: negative control), whereas the remaining five sites (designated sites 2-6) were exposed to solar-simulated UVR at 3 times the MED on four consecutive days. Site 2 received UVR only (site 2: positive control), whereas the following products were applied to sites 3-6, respectively: vehicle (moisturizer base cream; applied both 30 minutes before and immediately after each irradiation; site 3); a traditional sunscreen (SS, SPF 50) 30 minutes before irradiation and a vehicle immediately after irradiation (site 4); a SS 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 5); a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 6). Skin biopsies were taken 24 h after the last irradiation. The degree of telomere shortening and c-FOS gene expression were measured in all specimens. Strikingly, the combined use of a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation completely abrogated telomere shortening and c-FOS gene hyperexpression induced by the experimental irradiations. We conclude that the topical application of preparations containing both photolyase from A. nidulans and endonuclease from M. luteus may be clinically useful to prevent skin aging and carcinogenesis by abrogating UVR-induced telomere shortening and c-FOS gene hyperexpression.

Original languageEnglish
Pages (from-to)1017-1021
Number of pages5
JournalJournal of drugs in dermatology : JDD
Volume12
Issue number9
Publication statusPublished - Sep 2013

Fingerprint

DNA Repair Enzymes
Telomere Shortening
Deoxyribodipyrimidine Photo-Lyase
Proto-Oncogenes
Skin Aging
Radiation
Endonucleases
Skin
Carcinogenesis
Genes
Biopsy
Sunscreening Agents
Volunteers
Gene Expression

ASJC Scopus subject areas

  • Dermatology

Cite this

Topical application of preparations containing DNA repair enzymes prevents ultraviolet-induced telomere shortening and c-FOS proto-oncogene hyperexpression in human skin : An experimental pilot study. / Emanuele, Enzo; Altabas, Velimir; Altabas, Karmela; Berardesca, Enzo.

In: Journal of drugs in dermatology : JDD, Vol. 12, No. 9, 09.2013, p. 1017-1021.

Research output: Contribution to journalArticle

@article{1f51f4f8759746ec96073334f1d21ba7,
title = "Topical application of preparations containing DNA repair enzymes prevents ultraviolet-induced telomere shortening and c-FOS proto-oncogene hyperexpression in human skin: An experimental pilot study",
abstract = "The exposure to ultraviolet radiation (UVR) is one of the most important risk factors for skin aging and increases the risk of malignant transformation. Telomere shortening and an altered expression of the proto-oncogene c-FOS are among the key molecular mechanisms associated with photoaging and tumorigenesis. Photolyase from A. nidulans and endonuclease from M. luteus are xenogenic DNA repair enzymes which can reverse the molecular events associated with skin aging and carcinogenosis caused by UVR exposure. Therefore, the purpose of this study was to investigate whether the topical application of preparations containing DNA repair enzymes may prevent UVR-induced acute telomere shortening and FOS gene hyperexpression in human skin biopsies. Twelve volunteers (Fitzpatrick skin types I and II) were enrolled for this experimental study, and six circular areas (10 mm diameter) were marked out on the nonexposed lower back of each participant. One site was left untreated (site 1: negative control), whereas the remaining five sites (designated sites 2-6) were exposed to solar-simulated UVR at 3 times the MED on four consecutive days. Site 2 received UVR only (site 2: positive control), whereas the following products were applied to sites 3-6, respectively: vehicle (moisturizer base cream; applied both 30 minutes before and immediately after each irradiation; site 3); a traditional sunscreen (SS, SPF 50) 30 minutes before irradiation and a vehicle immediately after irradiation (site 4); a SS 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 5); a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 6). Skin biopsies were taken 24 h after the last irradiation. The degree of telomere shortening and c-FOS gene expression were measured in all specimens. Strikingly, the combined use of a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation completely abrogated telomere shortening and c-FOS gene hyperexpression induced by the experimental irradiations. We conclude that the topical application of preparations containing both photolyase from A. nidulans and endonuclease from M. luteus may be clinically useful to prevent skin aging and carcinogenesis by abrogating UVR-induced telomere shortening and c-FOS gene hyperexpression.",
author = "Enzo Emanuele and Velimir Altabas and Karmela Altabas and Enzo Berardesca",
year = "2013",
month = "9",
language = "English",
volume = "12",
pages = "1017--1021",
journal = "Journal of Drugs in Dermatology",
issn = "1545-9616",
publisher = "Journal of Drugs in Dermatology",
number = "9",

}

TY - JOUR

T1 - Topical application of preparations containing DNA repair enzymes prevents ultraviolet-induced telomere shortening and c-FOS proto-oncogene hyperexpression in human skin

T2 - An experimental pilot study

AU - Emanuele, Enzo

AU - Altabas, Velimir

AU - Altabas, Karmela

AU - Berardesca, Enzo

PY - 2013/9

Y1 - 2013/9

N2 - The exposure to ultraviolet radiation (UVR) is one of the most important risk factors for skin aging and increases the risk of malignant transformation. Telomere shortening and an altered expression of the proto-oncogene c-FOS are among the key molecular mechanisms associated with photoaging and tumorigenesis. Photolyase from A. nidulans and endonuclease from M. luteus are xenogenic DNA repair enzymes which can reverse the molecular events associated with skin aging and carcinogenosis caused by UVR exposure. Therefore, the purpose of this study was to investigate whether the topical application of preparations containing DNA repair enzymes may prevent UVR-induced acute telomere shortening and FOS gene hyperexpression in human skin biopsies. Twelve volunteers (Fitzpatrick skin types I and II) were enrolled for this experimental study, and six circular areas (10 mm diameter) were marked out on the nonexposed lower back of each participant. One site was left untreated (site 1: negative control), whereas the remaining five sites (designated sites 2-6) were exposed to solar-simulated UVR at 3 times the MED on four consecutive days. Site 2 received UVR only (site 2: positive control), whereas the following products were applied to sites 3-6, respectively: vehicle (moisturizer base cream; applied both 30 minutes before and immediately after each irradiation; site 3); a traditional sunscreen (SS, SPF 50) 30 minutes before irradiation and a vehicle immediately after irradiation (site 4); a SS 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 5); a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 6). Skin biopsies were taken 24 h after the last irradiation. The degree of telomere shortening and c-FOS gene expression were measured in all specimens. Strikingly, the combined use of a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation completely abrogated telomere shortening and c-FOS gene hyperexpression induced by the experimental irradiations. We conclude that the topical application of preparations containing both photolyase from A. nidulans and endonuclease from M. luteus may be clinically useful to prevent skin aging and carcinogenesis by abrogating UVR-induced telomere shortening and c-FOS gene hyperexpression.

AB - The exposure to ultraviolet radiation (UVR) is one of the most important risk factors for skin aging and increases the risk of malignant transformation. Telomere shortening and an altered expression of the proto-oncogene c-FOS are among the key molecular mechanisms associated with photoaging and tumorigenesis. Photolyase from A. nidulans and endonuclease from M. luteus are xenogenic DNA repair enzymes which can reverse the molecular events associated with skin aging and carcinogenosis caused by UVR exposure. Therefore, the purpose of this study was to investigate whether the topical application of preparations containing DNA repair enzymes may prevent UVR-induced acute telomere shortening and FOS gene hyperexpression in human skin biopsies. Twelve volunteers (Fitzpatrick skin types I and II) were enrolled for this experimental study, and six circular areas (10 mm diameter) were marked out on the nonexposed lower back of each participant. One site was left untreated (site 1: negative control), whereas the remaining five sites (designated sites 2-6) were exposed to solar-simulated UVR at 3 times the MED on four consecutive days. Site 2 received UVR only (site 2: positive control), whereas the following products were applied to sites 3-6, respectively: vehicle (moisturizer base cream; applied both 30 minutes before and immediately after each irradiation; site 3); a traditional sunscreen (SS, SPF 50) 30 minutes before irradiation and a vehicle immediately after irradiation (site 4); a SS 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 5); a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 6). Skin biopsies were taken 24 h after the last irradiation. The degree of telomere shortening and c-FOS gene expression were measured in all specimens. Strikingly, the combined use of a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation completely abrogated telomere shortening and c-FOS gene hyperexpression induced by the experimental irradiations. We conclude that the topical application of preparations containing both photolyase from A. nidulans and endonuclease from M. luteus may be clinically useful to prevent skin aging and carcinogenesis by abrogating UVR-induced telomere shortening and c-FOS gene hyperexpression.

UR - http://www.scopus.com/inward/record.url?scp=84883395252&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84883395252&partnerID=8YFLogxK

M3 - Article

C2 - 24002149

AN - SCOPUS:84883395252

VL - 12

SP - 1017

EP - 1021

JO - Journal of Drugs in Dermatology

JF - Journal of Drugs in Dermatology

SN - 1545-9616

IS - 9

ER -