Topical plant polyphenols prevent type I interferon signaling in the skin and suppress contact hypersensitivity

Maria Luigia Carbone, Daniela Lulli, Francesca Passarelli, Saveria Pastore

Research output: Contribution to journalArticlepeer-review


Human keratinocytes were recently shown to respond to anti-EGFR (epidermal growth factor receptor) drugs with activation of an interferon-κ-driven autocrine loop, leading to enhanced expression of innate antiviral effectors and of the pro-inflammatory chemokines CXCL10 (C-X-C motif chemokine 10) and CCL2 (C-C motif ligand 2). Here we showed active type I interferon signaling in the skin lesions of cancer patients undergoing treatment with the anti-EGFR drug cetuximab. Strong nuclear positivity for Interferon Regulatory Factor 1 and phosphorylated Signal Transducer and Activator of Transcription 1, enhanced interferon-κ expression and CXCL10 was associated to the epidermal compartment. Notably, 50 micromolar resveratrol and quercetin fully suppressed the low constitutive levels of type I interferon signaling and prevented its activation by the anti-EGFR cetuximab or gefitinib in cultured keratinocytes. In sensitized mice undergoing DNFB (2,4-dinitro-1-fluorobenzene)-induced contact hypersensitivity, local administration of gefitinib prior to elicitation further amplified hapten-induced type I interferon activation, tissue edema, and infiltration by T cells, whereas resveratrol or quercetin suppressed this inflammatory cascade. Overall, these data suggest that topical application of resveratrol or quercetin could be potentially effective in preventing pathological conditions due to overactivation of type I IFN (interferon)-driven circuits in the skin, including the inflammatory manifestations of anti-EGFR drug-induced skin-targeted toxicity.

Original languageEnglish
Article number2652
JournalInternational Journal of Molecular Sciences
Issue number9
Publication statusPublished - Sep 6 2018


  • CCL2
  • Cetuximab
  • CXCL10
  • EGFR
  • Gefitinib
  • Interferon κ
  • Quercetin
  • Resveratrol

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Topical plant polyphenols prevent type I interferon signaling in the skin and suppress contact hypersensitivity'. Together they form a unique fingerprint.

Cite this