Abstract
Original language | English |
---|---|
Article number | 304 |
Journal | Front. Neurosci. |
Volume | 13 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Autoimmunity
- Frontotemporal dementia
- Frontotemporal lobar degeneration
- Glutamate
- Neurotransmitter
- Transcranial magnetic stimulation
- 4 aminobutyric acid
- AMPA receptor
- dopamine
- glutamic acid
- neurotransmitter
- placebo
- serotonin
- serotonin uptake inhibitor
- disease exacerbation
- frontal cortex
- frontotemporal dementia
- glutamatergic synapse
- human
- molecular biology
- neurophysiology
- neurotransmission
- nonhuman
- Parkinson disease
- pathogenesis
- pyramidal nerve cell
- Review
- temporal cortex
Fingerprint Dive into the research topics of 'Toward a glutamate hypothesis of frontotemporal dementia: Frontiers in Neuroscience'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Toward a glutamate hypothesis of frontotemporal dementia : Frontiers in Neuroscience. / Benussi, A.; Alberici, A.; Buratti, E.; Ghidoni, R.; Gardoni, F.; Luca, M.D.; Padovani, A.; Borroni, B.
In: Front. Neurosci., Vol. 13, 304, 2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Toward a glutamate hypothesis of frontotemporal dementia
T2 - Frontiers in Neuroscience
AU - Benussi, A.
AU - Alberici, A.
AU - Buratti, E.
AU - Ghidoni, R.
AU - Gardoni, F.
AU - Luca, M.D.
AU - Padovani, A.
AU - Borroni, B.
N1 - Cited By :3 Export Date: 10 February 2020 Correspondence Address: Borroni, B.; Neurology Unit, Department of Clinical and Experimental Sciences, University of BresciaItaly; email: BarbaraBorronibarbara.borroni@unibs.it Chemicals/CAS: 4 aminobutyric acid, 28805-76-7, 56-12-2; dopamine, 51-61-6, 62-31-7; glutamic acid, 11070-68-1, 138-15-8, 56-86-0, 6899-05-4; serotonin, 50-67-9 Funding text 1: This work was supported by the Italian Ministry of Health (Ricerca Corrente). References: Adamczyk, A., Mejias, R., Takamiya, K., Yocum, J., Krasnova, I.N., Calderon, J., GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum (2012) Behav. Brain Res., 229, pp. 265-272; Alberici, A., Cristillo, V., Gazzina, S., Benussi, A., Padovani, A., Borroni, B., Autoimmunity and frontotemporal dementia (2018) Curr. Alzheimer Res., 15, pp. 602-609; Anneser, J.M.H., Jox, R.J., Borasio, G.D., Inappropriate sexual behaviour in a case of ALS and FTD: Successful treatment with sertraline (2007) Amyotroph. Lateral Scler., 8, pp. 189-190; Armstrong, M.J., Litvan, I., Lang, A.E., Bak, T.H., Bhatia, K.P., Borroni, B., Criteria for the diagnosis of corticobasal degeneration (2013) Neurology, 80, pp. 496-503; Bang, J., Spina, S., Miller, B.L., Frontotemporal dementia (2015) Lancet, 386, pp. 1672-1682; Benussi, A., Alberici, A., Ferrari, C., Cantoni, V., Dell'Era, V., Turrone, R., The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease (2018) Alzheimers Res. Ther., 10, p. 94; Benussi, A., Dell'Era, V., Cantoni, V., Ferrari, C., Caratozzolo, S., Rozzini, L., Discrimination of atypical parkinsonisms with transcranial magnetic stimulation (2018) Brain Stimul, 11, pp. 366-373; Benussi, A., Cosseddu, M., Filareto, I., Dell'Era, V., Archetti, S., Sofia Cotelli, M., Impaired long-term potentiation-like cortical plasticity in presymptomatic genetic frontotemporal dementia (2016) Ann. Neurol., 80, pp. 472-476; Benussi, A., Di Lorenzo, F., Dell'Era, V., Cosseddu, M., Alberici, A., Caratozzolo, S., Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia (2017) Neurology, 89, pp. 665-672; Benussi, A., Gazzina, S., Premi, E., Cosseddu, M., Archetti, S., Dell'Era, V., Clinical and biomarker changes in presymptomatic genetic frontotemporal dementia (2019) Neurobiol. Aging, 76, pp. 133-140; Benussi, A., Padovani, A., Borroni, B., Phenotypic heterogeneity of monogenic frontotemporal dementia (2015) Front. Aging Neurosci., 7, p. 171; Benussi, A., Padovani, A., Borroni, B., Transcranial magnetic stimulation in Alzheimer's Disease and cortical dementias (2015) J. Alzheimers Dis. Parkinsonism, 5, p. 197; Blasco, H., Mavel, S., Corcia, P., Gordon, P.H., The glutamate hypothesis in ALS: Pathophysiology and drug development (2014) Curr. Med. Chem., 21, pp. 3551-3575; Bliss, T.V., Collingridge, G.L., A synaptic model of memory: Long-term potentiation in the hippocampus (1993) Nature, 361, pp. 31-39; Borroni, B., Benussi, A., Archetti, S., Galimberti, D., Parnetti, L., Nacmias, B., Csf p-tau181/tau ratio as biomarker for TDP pathology in frontotemporal dementia (2015) Amyotroph. Lateral Scler. Front. Degener., 16, pp. 86-91; Borroni, B., Benussi, A., Premi, E., Alberici, A., Marcello, E., Gardoni, F., Biological, neuroimaging, and neurophysiological markers in frontotemporal dementia: Three faces of the same coin (2018) J. Alzheimers Dis., 62, pp. 1113-1123; Borroni, B., Padovani, A., Dementia: A new algorithm for molecular diagnostics in FTLD (2013) Nat. Rev. Neurol., 9, pp. 241-242; Borroni, B., Stanic, J., Verpelli, C., Mellone, M., Bonomi, E., Alberici, A., Anti-AMPA GluA3 antibodies in frontotemporal dementia: A new molecular target (2017) Sci. Rep., 7, p. 1006; Bowen, D.M., Procter, A.W., Mann, D.M.A., Snowden, J.S., Esiri, M.M., Neary, D., Imbalance of a serotonergic system in frontotemporal dementia: Implication for pharmacotherapy (2008) Psychopharmacology, 196, pp. 603-610; Bowie, D., Ionotropic glutamate receptors & CNS disorders (2008) CNS Neurol. Disord. Drug Targets, 7, pp. 129-143; Boxer, A.L., Knopman, D.S., Kaufer, D.I., Grossman, M., Onyike, C., Graf-Radford, N., Memantine in patients with frontotemporal lobar degeneration: A multicentre, randomised, double-blind, placebo-controlled trial (2013) Lancet Neurol, 12, pp. 149-156; Broustal, O., Camuzat, A., Guillot-Noël, L., Guy, N., Millecamps, S., Deffond, D., FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis (2010) J. Alzheimers. Dis., 22, pp. 765-769; Burrell, J.R., Halliday, G.M., Kril, J.J., Ittner, L.M., Götz, J., Kiernan, M.C., The frontotemporal dementia-motor neuron disease continuum (2016) Lancet, 388, pp. 919-931; Burrell, J.R., Kiernan, M.C., Vucic, S., Hodges, J.R., Motor neuron dysfunction in frontotemporal dementia (2011) Brain, 134, pp. 2582-2594; Cairns, N.J., Bigio, E.H., Mackenzie, I.R.A., Neumann, M., Lee, V.M.Y., Hatanpaa, K.J., Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: Consensus of the consortium for frontotemporal lobar degeneration (2007) Acta Neuropathol, 114, pp. 5-22; Cash, R.F.H., Noda, Y., Zomorrodi, R., Radhu, N., Farzan, F., Rajji, T.K., Characterization of glutamatergic and GABAA-Mediated neurotransmission in motor and dorsolateral prefrontal cortex using paired-pulse TMS-EEG (2016) Neuropsychopharmacology, 42, pp. 502-511; Castillo, C.A., León, D.A., Ballesteros-Yáñez, I., Iglesias, I., Martín, M., Albasanz, J.L., Glutamate differently modulates metabotropic glutamate receptors in neuronal and glial cells (2010) Neurochem. Res., 35, pp. 1050-1063; Cavazzana, I., Alberici, A., Bonomi, E., Ottaviani, R., Kumar, R., Archetti, S., Antinuclear antibodies in frontotemporal dementia: The tip's of autoimmunity iceberg? (2018) J. Neuroimmunol., 325, pp. 61-63; Ciranna, L., Serotonin as a modulator of glutamate- And GABA-mediated neurotransmission: Implications in physiological functions and in pathology (2006) Curr. Neuropharmacol., 4, pp. 101-114; Dalmau, J., Graus, F., Antibody-mediated encephalitis (2018) N. Engl. J. Med., 378, pp. 840-851; Dawson, L.A., Nguyen, H.Q., Li, P., The 5-HT6 receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus (2001) Neuropsychopharmacology, 25, pp. 662-668; Decker, J.M., Krüger, L., Sydow, A., Dennissen, F.J., Siskova, Z., Mandelkow, E., The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity (2016) EMBO Rep, 17, pp. 552-569; Ernst, T., Chang, L., Melchor, R., Mehringer, C.M., Frontotemporal dementia and early Alzheimer disease: Differentiation with frontal lobe H-1 MR spectroscopy (1997) Radiology, 203, pp. 829-836; Ferrer, I., Neurons and their dendrites in frontotemporal dementia (1999) Dement. Geriatr. Cogn. Disord., 10, pp. 55-60; Freischmidt, A., Wieland, T., Richter, B., Ruf, W., Schaeffer, V., Müller, K., Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia (2015) Nat. Neurosci., 18, pp. 631-636; Gascon, E., Lynch, K., Ruan, H., Almeida, S., Verheyden, J.M., Seeley, W.W., Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia (2014) Nat. Med., 20, pp. 1444-1451; Gazzina, S., Benussi, A., Premi, E., Paternicò, D., Cristillo, V., Dell'Era, V., Neuroanatomical correlates of transcranial magnetic stimulation in presymptomatic granulin mutation carriers (2018) Brain Topogr, 31, pp. 488-497; Geevasinga, N., Menon, P., Nicholson, G.A., Ng, K., Howells, J., Kril, J.J., Cortical function in asymptomatic carriers and patients with C9orf72Amyotrophic lateral sclerosis (2015) JAMA Neurol, 72, pp. 1268-1274; Gijselinck, I., Van Mossevelde, S., Van Der Zee, J., Sieben, A., Philtjens, S., Heeman, B., Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort (2015) Neurology, 85, pp. 2116-2125; Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Classification of primary progressive aphasia and its variants (2011) Neurology, 76, pp. 1006-1014; Herrmann, N., Black, S.E., Chow, T., Cappell, J., Tang-Wai, D.F., Lanctôt, K.L., Serotonergic function and treatment of behavioral and psychological symptoms of frontotemporal dementia (2012) Am. J. Geriatr. Psychiatry, 20, pp. 789-797; Holm, I.E., Isaacs, A.M., Mackenzie, I.R.A., Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene (2009) Acta Neuropathol, 118, pp. 719-720; Huey, E.D., Putnam, K.T., Grafman, J., A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia (2006) Neurology, 66, pp. 17-22; Huganir, R.L., Nicoll, R.A., AMPARs and synaptic plasticity: The last 25 years (2013) Neuron, 80, pp. 704-717; Hughes, L.E., Rittman, T., Regenthal, R., Robbins, T.W., Rowe, J.B., Improving response inhibition systems in frontotemporal dementia with citalopram (2015) Brain, 138, pp. 1961-1975; Hughes, L.E., Rittman, T., Robbins, T.W., Rowe, J.B., Reorganization of cortical oscillatory dynamics underlying disinhibition in frontotemporal dementia (2018) Brain, 141, pp. 2486-2499; Kawahara, Y., Ito, K., Sun, H., Ito, M., Kanazawa, I., Kwak, S., GluR4c, an alternative splicing isoform of GluR4, is abundantly expressed in the adult human brain (2004) Brain Res. Mol. Brain Res., 127, pp. 150-155; Kovacs, G.G., Van Der Zee, J., Hort, J., Kristoferitsch, W., Leitha, T., Höftberger, R., Clinicopathological description of two cases with SQSTM1 gene mutation associated with frontotemporal dementia (2016) Neuropathology, 36, pp. 27-38; Lally, N., Mullins, P.G., Roberts, M.V., Price, D., Gruber, T., Haenschel, C., Glutamatergic correlates of gamma-band oscillatory activity during cognition: A concurrent ER-MRS and EEG study (2014) Neuroimage, 85, pp. 823-833; Le Ber, I., Camuzat, A., Guerreiro, R., Bouya-Ahmed, K., Bras, J., Nicolas, G., SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis (2013) JAMA Neurol, 70, pp. 1403-1410; Lebert, F., Stekke, W., Hasenbroekx, C., Pasquier, F., Frontotemporal dementia: A randomised, controlled trial with trazodone (2004) Dement. Geriatr. Cogn. Disord., 17, pp. 355-359; Lescher, J., Paap, F., Schultz, V., Redenbach, L., Scheidt, U., Rosewich, H., MicroRNA regulation in experimental autoimmune encephalomyelitis in mice and marmosets resembles regulation in human multiple sclerosis lesions (2012) J. Neuroimmunol., 246, pp. 27-33; Leuzy, A., Zimmer, E.R., Dubois, J., Pruessner, J., Cooperman, C., Soucy, J.-P., In vivo characterization of metabotropic glutamate receptor type 5 abnormalities in behavioral variant FTD (2016) Brain Struct. Funct., 221, pp. 1387-1402; Levenga, J., Krishnamurthy, P., Rajamohamedsait, H., Wong, H., Franke, T.F., Cain, P., Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments (2013) Acta Neuropathol. Commun., 1, p. 34; Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R.C., Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): Report of the NINDS-SPSP international workshop (1996) Neurology, 47, pp. 1-9; Longhena, F., Zaltieri, M., Grigoletto, J., Faustini, G., La Via, L., Ghidoni, R., Depletion of progranulin reduces GluN2B-containing NMDA receptor density, tau phosphorylation and dendritic arborization in mouse primary cortical neurons (2017) J. Pharmacol. Exp. Ther., 363, pp. 164-175; Menniti, F.S., Lindsley, W.C., Conn, P.J., Pandit, J., Zagouras, P., Volkmann, R.A., Allosteric modulators for the treatment of schizophrenia: Targeting glutamatergic networks (2013) Curr. Top. Med. Chem., 13, pp. 26-54; Moretti, R., Torre, P., Antonello, R.M., Cazzato, G., Bava, A., Frontotemporal dementia: Paroxetine as a possible treatment of behavior symptoms: A randomized, controlled, open 14-month study (2003) Eur. Neurol., 49, pp. 13-19; Murley, A.G., Rowe, J.B., Neurotransmitter deficits from fronto temporal lobar degeneration (2018) Brain, 141, pp. 1263-1285; Neumann, M., Mackenzie, I.R.A., Review: Neuropathology of non-tau frontotemporal lobar degeneration (2019) Neuropathol. Appl. Neurobiol., 45, pp. 19-40; Opazo, P., Labrecque, S., Tigaret, C.M., Frouin, A., Wiseman, P.W., De Koninck, P., CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin (2010) Neuron, 67, pp. 239-252; Padovani, A., Benussi, A., Cantoni, V., Dell'Era, V., Cotelli, M.S., Caratozzolo, S., Diagnosis of mild cognitive impairment due to Alzheimer's disease with transcranial magnetic stimulation (2018) J. Alzheimers Dis., 65, pp. 221-230; Paoletti, P., Bellone, C., Zhou, Q., NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease (2013) Nat. Rev. Neurosci., 14, pp. 383-400; Pooler, A.M., Polydoro, M., Wegmann, S., Nicholls, S.B., Spires-Jones, T.L., Hyman, B.T., Propagation of tau pathology in Alzheimer's disease: Identification of novel therapeutic targets (2013) Alzheimers Res. Ther., 5, pp. 1-8; Pottier, C., Bieniek, K.F., Finch, N., Van De Vorst, M., Baker, M., Perkersen, R., Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease (2015) Acta Neuropathol, 130, pp. 77-92; Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia (2011) Brain, 134, pp. 2456-2477; Renner, M.C., Albers, E.H., Gutierrez-Castellanos, N., Reinders, N.R., Van Huijstee, A.N., Xiong, H., Synaptic plasticity through activation of GluA3-containing AMPA-receptors (2017) eLife, 6; Rohrer, J.D., Lashley, T., Schott, J.M., Warren, J.E., Mead, S., Isaacs, A.M., Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration (2011) Brain, 134, pp. 2565-2581; Rossini, P.M., Burke, D., Chen, R., Cohen, L.G., Daskalakis, Z., Di Iorio, R., Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee (2015) Clin. Neurophysiol., 126, pp. 1071-1107; Rothstein, J.D., Martin, L.J., Kuncl, R.W., Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis (1992) N. Engl. J. Med., 326, pp. 1464-1468; Rothstein, J.D., Van Kammen, M., Levey, A.I., Martin, L.J., Kuncl, R.W., Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis (1995) Ann. Neurol., 38, pp. 73-84; Rubino, E., Rainero, I., Chio, A., Rogaeva, E., Galimberti, D., Fenoglio, P., SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis (2012) Neurology, 79, pp. 1556-1562; Sabater, L., Gaig, C., Gelpi, E., Bataller, L., Lewerenz, J., Torres-Vega, E., A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: A case series, characterisation of the antigen, and post-mortem study (2014) Lancet Neurol, 13, pp. 575-586; Sarac, H., Zagar, M., Vranjes, D., Henigsberg, N., Bilić, E., Pavlisa, G., Magnetic resonance imaging and magnetic resonance spectroscopy in a patient with amyotrophic lateral sclerosis and frontotemporal dementia (2008) Coll. Antropol., 32, pp. 205-210; Schwenkreis, P., Witscher, K., Janssen, F., Addo, A., Dertwinkel, R., Zenz, M., Influence of the N-methyl-d-aspartate antagonist memantine on human motor cortex excitability (1999) Neurosci. Lett., 270, pp. 137-140; Sephton, C.F., Yu, G., The function of RNA-binding proteins at the synapse: Implications for neurodegeneration (2015) Cell. Mol. Life Sci., 72, pp. 3621-3635; Sieben, A., Van Langenhove, T., Engelborghs, S., Martin, J.-J., Boon, P., Cras, P., The genetics and neuropathology of frontotemporal lobar degeneration (2012) Acta Neuropathol, 124, pp. 353-372; Skibinski, G., Parkinson, N.J., Brown, J.M., Chakrabarti, L., Lloyd, S.L., Hummerich, H., Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia (2005) Nat. Genet., 37, pp. 806-808; Spillantini, M.G., Goedert, M., Tau pathology and neurodegeneration (2013) Lancet Neurol, 12, pp. 609-622; Tariot, P.N., Farlow, M.R., Grossberg, G.T., Graham, S.M., McDonald, S., Gergel, I., Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: A randomized controlled trial (2004) JAMA, 291, pp. 317-324; Tsai, R.M., Boxer, A.L., Therapy and clinical trials in frontotemporal dementia: Past, present, and future (2016) J. Neurochem., 138, pp. 211-221; Udagawa, T., Fujioka, Y., Tanaka, M., Honda, D., Yokoi, S., Riku, Y., FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization (2015) Nat. Commun., 6, p. 7098; Van Den Bos, M.A.J., Higashihara, M., Geevasinga, N., Menon, P., Kiernan, M.C., Vucic, S., Imbalance of cortical facilitatory and inhibitory circuits underlies hyperexcitability in ALS (2018) Neurology, 91, pp. e1669-e1676; Van Der Zee, J., Pirici, D., Van Langenhove, T., Engelborghs, S., Vandenberghe, R., Hoffmann, M., Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His (2009) Neurology, 73, pp. 626-632; Van Der Zee, J., Van Langenhove, T., Kovacs, G.G., Dillen, L., Deschamps, W., Engelborghs, S., Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration (2014) Acta Neuropathol, 128, pp. 397-410; Van Langenhove, T., Van Der Zee, J., Sleegers, K., Engelborghs, S., Vandenberghe, R., Gijselinck, I., Genetic contribution of FUS to frontotemporal lobar degeneration (2010) Neurology, 74, pp. 366-371; Van Mossevelde, S., Engelborghs, S., Van Der Zee, J., Van Broeckhoven, C., Genotype-phenotype links in frontotemporal lobar degeneration (2018) Nat. Rev. Neurol., 14, pp. 363-378; Vercelletto, M., Boutoleau-Bretonnière, C., Volteau, C., Puel, M., Auriacombe, S., Sarazin, M., Memantine in behavioral variant frontotemporal dementia: Negative results (2011) J. Alzheimers. Dis., 23, pp. 749-759; Vermeiren, Y., Janssens, J., Aerts, T., Martin, J.J., Sieben, A., Van Dam, D., Brain serotonergic and noradrenergic deficiencies in behavioral variant frontotemporal dementia compared to early-onset Alzheimer's Disease (2016) J. Alzheimers Dis., 53, pp. 1079-1096; Vermeiren, Y., Le Bastard, N., Van Hemelrijck, A., Drinkenburg, W.H., Engelborghs, S., De Deyn, P.P., Behavioral correlates of cerebrospinal fluid amino acid and biogenic amine neurotransmitter alterations in dementia (2013) Alzheimers Dement, 9, pp. 488-498; Wang, Z., Neely, R., Landisman, C.E., Activation of Group I and Group II metabotropic glutamate receptors causes LTD and LTP of electrical synapses in the rat thalamic reticular nucleus (2015) J. Neurosci., 35, pp. 7616-7625; Warmus, B.A., Sekar, D.R., McCutchen, E., Schellenberg, G.D., Roberts, R.C., McMahon, L.L., Tau-mediated NMDA receptor impairment underlies dysfunction of a selectively vulnerable network in a mouse model of frontotemporal dementia (2014) J. Neurosci., 34, pp. 16482-16495; Watts, G.D.J., Wymer, J., Kovach, M.J., Mehta, S.G., Mumm, S., Darvish, D., Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein (2004) Nat. Genet., 36, pp. 377-381; Yamashita, T., Kwak, S., The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients (2014) Brain Res, 1584, pp. 28-38; Ziemann, U., Chen, R., Cohen, L.G., Hallett, M., Dextromethorphan decreases the excitability of the human motor cortex (1998) Neurology, 51, pp. 1320-1324; Ziemann, U., Reis, J., Schwenkreis, P., Rosanova, M., Strafella, A., Badawy, R., TMS and drugs revisited 2014 (2015) Clin. Neurophysiol., 126, pp. 1847-1868
PY - 2019
Y1 - 2019
N2 - Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disorder, characterized by diverse clinical presentations, neuropathological characteristics and underlying genetic causes. Emerging evidence has shown that FTD is characterized by a series of changes in several neurotransmitter systems, including serotonin, dopamine, GABA and, above all, glutamate. Indeed, several studies have now provided preclinical and clinical evidence that glutamate is key in the pathogenesis of FTD. Animal models of FTD have shown a selective hypofunction in N-methyl D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, while in patients, glutamatergic pyramidal neurons are depleted in several areas, including the frontal and temporal cortices. Recently, a selective involvement of the AMPA GluA3 subunit has been observed in patients with autoimmune anti-GluA3 antibodies, which accounted for nearly 25% of FTD patients, leading to a decrease of the GluA3 subunit synaptic localization of the AMPA receptor and loss of dendritic spines. Other in vivo evidence of the involvement of the glutamatergic system in FTD derives from non-invasive brain stimulation studies using transcranial magnetic stimulation, in which specific stimulation protocols have indirectly identified a selective and prominent impairment in glutamatergic circuits in patients with both sporadic and genetic FTD. In view of limited disease modifying therapies to slow or revert disease progression in FTD, an important approach could consist in targeting the neurotransmitter deficits, similarly to what has been achieved in Parkinson's disease with dopaminergic therapy or Alzheimer's disease with cholinergic therapy. In this review, we summarize the current evidence concerning the involvement of the glutamatergic system in FTD, suggesting the development of new therapeutic strategies. © 2019 Benussi, Alberici, Buratti, Ghidoni, Gardoni, Di Luca, Padovani and Borroni.
AB - Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disorder, characterized by diverse clinical presentations, neuropathological characteristics and underlying genetic causes. Emerging evidence has shown that FTD is characterized by a series of changes in several neurotransmitter systems, including serotonin, dopamine, GABA and, above all, glutamate. Indeed, several studies have now provided preclinical and clinical evidence that glutamate is key in the pathogenesis of FTD. Animal models of FTD have shown a selective hypofunction in N-methyl D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, while in patients, glutamatergic pyramidal neurons are depleted in several areas, including the frontal and temporal cortices. Recently, a selective involvement of the AMPA GluA3 subunit has been observed in patients with autoimmune anti-GluA3 antibodies, which accounted for nearly 25% of FTD patients, leading to a decrease of the GluA3 subunit synaptic localization of the AMPA receptor and loss of dendritic spines. Other in vivo evidence of the involvement of the glutamatergic system in FTD derives from non-invasive brain stimulation studies using transcranial magnetic stimulation, in which specific stimulation protocols have indirectly identified a selective and prominent impairment in glutamatergic circuits in patients with both sporadic and genetic FTD. In view of limited disease modifying therapies to slow or revert disease progression in FTD, an important approach could consist in targeting the neurotransmitter deficits, similarly to what has been achieved in Parkinson's disease with dopaminergic therapy or Alzheimer's disease with cholinergic therapy. In this review, we summarize the current evidence concerning the involvement of the glutamatergic system in FTD, suggesting the development of new therapeutic strategies. © 2019 Benussi, Alberici, Buratti, Ghidoni, Gardoni, Di Luca, Padovani and Borroni.
KW - Autoimmunity
KW - Frontotemporal dementia
KW - Frontotemporal lobar degeneration
KW - Glutamate
KW - Neurotransmitter
KW - Transcranial magnetic stimulation
KW - 4 aminobutyric acid
KW - AMPA receptor
KW - dopamine
KW - glutamic acid
KW - neurotransmitter
KW - placebo
KW - serotonin
KW - serotonin uptake inhibitor
KW - disease exacerbation
KW - frontal cortex
KW - frontotemporal dementia
KW - glutamatergic synapse
KW - human
KW - molecular biology
KW - neurophysiology
KW - neurotransmission
KW - nonhuman
KW - Parkinson disease
KW - pathogenesis
KW - pyramidal nerve cell
KW - Review
KW - temporal cortex
U2 - 10.3389/fnins.2019.00304
DO - 10.3389/fnins.2019.00304
M3 - Article
VL - 13
JO - Front. Neurosci.
JF - Front. Neurosci.
SN - 1662-4548
M1 - 304
ER -