TY - JOUR
T1 - TRAIL counteracts the proadhesive activity of inflammatory cytokines in endothelial cells by down-modulating CCL8 and CXCL10 chemokine expression and release
AU - Secchiero, Paola
AU - Corallini, Federica
AU - Di Iasio, Maria Grazia
AU - Gonelli, Arianna
AU - Barbarotto, Elisa
AU - Zauli, Giorgio
PY - 2005/5/1
Y1 - 2005/5/1
N2 - Exposure of endothelial cells to recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced a modest (2-fold) increase of HL-60 cell adhesion as compared to TNF-α (40-fold) or interleukin 1β (IL-1β; 20-fold). However, pretreatment of endothelial cultures with TRAIL determined a significant reduction of the proadhesive activity induced by both TNF-α and IL-1β. Unexpectedly, the antiadhesive activity of TRAIL was not due to interference with the nuclear factor κB (NF-κB)-mediated upregulation of surface intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin adhesion molecules in response to inflammatory cytokines. In searching for the molecular mechanism underlying this biologic activity of TRAIL, a cDNA microarray analysis was performed. TRAIL pretreatment variably down-modulated the mRNA steady-state levels of several TNF-α-induced chemokines, and, in particular, it abrogated the TNF-α-mediated up-regulation of CCL8 and CXCL10. Of note, the addition of optimal concentrations of recombinant CCL8 plus CXCL10 to endothelial cultures completely restored the proadhesive activity of TNF-α. Moreover, experiments performed with agonistic anti-TRAIL receptor antibodies demonstrated that both TRAIL-R1 and TRAIL-R2 contributed, although at different levels, to TRAIL-induced chemokine modulation. Taken together, our data suggest that TRAIL might play an important role in modulating leukocyte/endothelial cell adhesion by selectively down-regulating CCL8 and CXCL10 chemokines.
AB - Exposure of endothelial cells to recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced a modest (2-fold) increase of HL-60 cell adhesion as compared to TNF-α (40-fold) or interleukin 1β (IL-1β; 20-fold). However, pretreatment of endothelial cultures with TRAIL determined a significant reduction of the proadhesive activity induced by both TNF-α and IL-1β. Unexpectedly, the antiadhesive activity of TRAIL was not due to interference with the nuclear factor κB (NF-κB)-mediated upregulation of surface intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin adhesion molecules in response to inflammatory cytokines. In searching for the molecular mechanism underlying this biologic activity of TRAIL, a cDNA microarray analysis was performed. TRAIL pretreatment variably down-modulated the mRNA steady-state levels of several TNF-α-induced chemokines, and, in particular, it abrogated the TNF-α-mediated up-regulation of CCL8 and CXCL10. Of note, the addition of optimal concentrations of recombinant CCL8 plus CXCL10 to endothelial cultures completely restored the proadhesive activity of TNF-α. Moreover, experiments performed with agonistic anti-TRAIL receptor antibodies demonstrated that both TRAIL-R1 and TRAIL-R2 contributed, although at different levels, to TRAIL-induced chemokine modulation. Taken together, our data suggest that TRAIL might play an important role in modulating leukocyte/endothelial cell adhesion by selectively down-regulating CCL8 and CXCL10 chemokines.
UR - http://www.scopus.com/inward/record.url?scp=18244373214&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=18244373214&partnerID=8YFLogxK
U2 - 10.1182/blood-2004-10-4111
DO - 10.1182/blood-2004-10-4111
M3 - Article
C2 - 15644410
AN - SCOPUS:18244373214
VL - 105
SP - 3413
EP - 3419
JO - Blood
JF - Blood
SN - 0006-4971
IS - 9
ER -