Transactivation of the epidermal growth factor receptor in endothelin-1-induced mitogenic signaling in human ovarian carcinoma cells

F. Vacca, A. Bagnato, K. J. Cart, R. Tecce

Research output: Contribution to journalArticle

115 Citations (Scopus)

Abstract

Endothelin (ET)-1 is produced in ovarian carcinoma cells and is known to act through ET(A) receptors as an autocrine growth factor in vitro and in vivo. In OVCA 433 human ovarian carcinoma cells, ET-1 caused phosphorylation of the epidermal growth factor receptor (EGF-R) that was accompanied by phosphorylation of Shc and its recruitment complexed with Grb2. These findings suggested that an EGF-R/ras-dependent pathway may contribute to the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) 2 and mitogenic signaling induced by ET-1 in these cells. Specific inhibition of EGF-R kinase activity by tyrphostin AG1478 prevented ET-1-induced transactivation of the EGF-R, as well as Shc phosphorylation and recruitment with Grb2. Furthermore, ET-1-induced activation of Erk 2 was partially inhibited by tyrphostin AG1478. In accord with this finding, the mitogenic action of ET-1 in OVCA 433 cells was also significantly reduced by a concentration of tyrphostin AG1478 that abolished the growth response of EGF-stimulated cells. Inhibition of protein kinase C activity, which contributes to the proliferative action of ET-1 in OVCA 433 cells, had no effect on the activation of Erk 2 by ET-1, which suggests that this effect of protein kinase C does not involve ras-independent activation of Erk 2. Inhibition by wortmannin of PI3-kinase activity, which has been implicated in ET-1 and other G protein-coupled receptor (GPCR)-mediated signaling pathways, reduced Erk 2 activation by ET-1 but had no effect on ET-1-induced EGF-R and Shc phosphorylation. These findings indicate that ET-1-induced stimulation of Erk 2 phosphorylation, and mitogenic responses in OVCA 433 ovarian cancer cells are mediated in part by signaling pathways that are initiated by transactivation of the EGF-R.

Original languageEnglish
Pages (from-to)5310-5317
Number of pages8
JournalCancer Research
Volume60
Issue number18
Publication statusPublished - Sep 15 2000

Fingerprint

Endothelin-1
Epidermal Growth Factor Receptor
Transcriptional Activation
Carcinoma
Mitogen-Activated Protein Kinase 1
Phosphorylation
Epidermal Growth Factor
Protein Kinase C
Endothelin A Receptors
G-Protein-Coupled Receptors
Mitogen-Activated Protein Kinases
Phosphatidylinositol 3-Kinases
Ovarian Neoplasms
Intercellular Signaling Peptides and Proteins

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Transactivation of the epidermal growth factor receptor in endothelin-1-induced mitogenic signaling in human ovarian carcinoma cells. / Vacca, F.; Bagnato, A.; Cart, K. J.; Tecce, R.

In: Cancer Research, Vol. 60, No. 18, 15.09.2000, p. 5310-5317.

Research output: Contribution to journalArticle

@article{814b7424fb6f4607a5149b3e4fff412e,
title = "Transactivation of the epidermal growth factor receptor in endothelin-1-induced mitogenic signaling in human ovarian carcinoma cells",
abstract = "Endothelin (ET)-1 is produced in ovarian carcinoma cells and is known to act through ET(A) receptors as an autocrine growth factor in vitro and in vivo. In OVCA 433 human ovarian carcinoma cells, ET-1 caused phosphorylation of the epidermal growth factor receptor (EGF-R) that was accompanied by phosphorylation of Shc and its recruitment complexed with Grb2. These findings suggested that an EGF-R/ras-dependent pathway may contribute to the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) 2 and mitogenic signaling induced by ET-1 in these cells. Specific inhibition of EGF-R kinase activity by tyrphostin AG1478 prevented ET-1-induced transactivation of the EGF-R, as well as Shc phosphorylation and recruitment with Grb2. Furthermore, ET-1-induced activation of Erk 2 was partially inhibited by tyrphostin AG1478. In accord with this finding, the mitogenic action of ET-1 in OVCA 433 cells was also significantly reduced by a concentration of tyrphostin AG1478 that abolished the growth response of EGF-stimulated cells. Inhibition of protein kinase C activity, which contributes to the proliferative action of ET-1 in OVCA 433 cells, had no effect on the activation of Erk 2 by ET-1, which suggests that this effect of protein kinase C does not involve ras-independent activation of Erk 2. Inhibition by wortmannin of PI3-kinase activity, which has been implicated in ET-1 and other G protein-coupled receptor (GPCR)-mediated signaling pathways, reduced Erk 2 activation by ET-1 but had no effect on ET-1-induced EGF-R and Shc phosphorylation. These findings indicate that ET-1-induced stimulation of Erk 2 phosphorylation, and mitogenic responses in OVCA 433 ovarian cancer cells are mediated in part by signaling pathways that are initiated by transactivation of the EGF-R.",
author = "F. Vacca and A. Bagnato and Cart, {K. J.} and R. Tecce",
year = "2000",
month = "9",
day = "15",
language = "English",
volume = "60",
pages = "5310--5317",
journal = "Journal of Cancer Research",
issn = "0008-5472",
publisher = "American Association for Cancer Research Inc.",
number = "18",

}

TY - JOUR

T1 - Transactivation of the epidermal growth factor receptor in endothelin-1-induced mitogenic signaling in human ovarian carcinoma cells

AU - Vacca, F.

AU - Bagnato, A.

AU - Cart, K. J.

AU - Tecce, R.

PY - 2000/9/15

Y1 - 2000/9/15

N2 - Endothelin (ET)-1 is produced in ovarian carcinoma cells and is known to act through ET(A) receptors as an autocrine growth factor in vitro and in vivo. In OVCA 433 human ovarian carcinoma cells, ET-1 caused phosphorylation of the epidermal growth factor receptor (EGF-R) that was accompanied by phosphorylation of Shc and its recruitment complexed with Grb2. These findings suggested that an EGF-R/ras-dependent pathway may contribute to the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) 2 and mitogenic signaling induced by ET-1 in these cells. Specific inhibition of EGF-R kinase activity by tyrphostin AG1478 prevented ET-1-induced transactivation of the EGF-R, as well as Shc phosphorylation and recruitment with Grb2. Furthermore, ET-1-induced activation of Erk 2 was partially inhibited by tyrphostin AG1478. In accord with this finding, the mitogenic action of ET-1 in OVCA 433 cells was also significantly reduced by a concentration of tyrphostin AG1478 that abolished the growth response of EGF-stimulated cells. Inhibition of protein kinase C activity, which contributes to the proliferative action of ET-1 in OVCA 433 cells, had no effect on the activation of Erk 2 by ET-1, which suggests that this effect of protein kinase C does not involve ras-independent activation of Erk 2. Inhibition by wortmannin of PI3-kinase activity, which has been implicated in ET-1 and other G protein-coupled receptor (GPCR)-mediated signaling pathways, reduced Erk 2 activation by ET-1 but had no effect on ET-1-induced EGF-R and Shc phosphorylation. These findings indicate that ET-1-induced stimulation of Erk 2 phosphorylation, and mitogenic responses in OVCA 433 ovarian cancer cells are mediated in part by signaling pathways that are initiated by transactivation of the EGF-R.

AB - Endothelin (ET)-1 is produced in ovarian carcinoma cells and is known to act through ET(A) receptors as an autocrine growth factor in vitro and in vivo. In OVCA 433 human ovarian carcinoma cells, ET-1 caused phosphorylation of the epidermal growth factor receptor (EGF-R) that was accompanied by phosphorylation of Shc and its recruitment complexed with Grb2. These findings suggested that an EGF-R/ras-dependent pathway may contribute to the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) 2 and mitogenic signaling induced by ET-1 in these cells. Specific inhibition of EGF-R kinase activity by tyrphostin AG1478 prevented ET-1-induced transactivation of the EGF-R, as well as Shc phosphorylation and recruitment with Grb2. Furthermore, ET-1-induced activation of Erk 2 was partially inhibited by tyrphostin AG1478. In accord with this finding, the mitogenic action of ET-1 in OVCA 433 cells was also significantly reduced by a concentration of tyrphostin AG1478 that abolished the growth response of EGF-stimulated cells. Inhibition of protein kinase C activity, which contributes to the proliferative action of ET-1 in OVCA 433 cells, had no effect on the activation of Erk 2 by ET-1, which suggests that this effect of protein kinase C does not involve ras-independent activation of Erk 2. Inhibition by wortmannin of PI3-kinase activity, which has been implicated in ET-1 and other G protein-coupled receptor (GPCR)-mediated signaling pathways, reduced Erk 2 activation by ET-1 but had no effect on ET-1-induced EGF-R and Shc phosphorylation. These findings indicate that ET-1-induced stimulation of Erk 2 phosphorylation, and mitogenic responses in OVCA 433 ovarian cancer cells are mediated in part by signaling pathways that are initiated by transactivation of the EGF-R.

UR - http://www.scopus.com/inward/record.url?scp=0034665584&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034665584&partnerID=8YFLogxK

M3 - Article

C2 - 11016663

AN - SCOPUS:0034665584

VL - 60

SP - 5310

EP - 5317

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0008-5472

IS - 18

ER -