Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold A promising strategy for neuroregeneration

Agnese Gugliandolo, Francesca Diomede, Paolo Cardelli, Alessia Bramanti, Domenico Scionti, Placido Bramanti, Oriana Trubiani, Emanuela Mazzon

Research output: Contribution to journalArticlepeer-review


The combined approach of mesenchymal stem cells (MSCs) and scaffolds has been proposed as a potential therapeutic tool for the treatment of neurodegenerative diseases. Indeed, even if MSCs can promote neuronal regeneration, replacing lost neurons or secreting neurotrophic factors, many limitations still exist for their application in regenerative medicine, including the low survival and differentiation rate. The scaffolds, by mimicking the endogenous microenvironment, have shown to promote cell survival, proliferation, and differentiation. In this work, gingival mesenchymal stem cells (GMSCs), isolated from healthy donors, were expanded in vitro, by culturing them adherent in plastic dishes (CTR-GMSCs) or on a poly(lactic acid) scaffold (SC-GMSCs). In order to evaluate the survival and the neurogenic differentiation potential, we performed a comparative transcriptomic analysis between CTR-GMSCs and SC-GMSCs by next generation sequencing. We found that SC-GMSCs showed an increased expression of neurogenic and prosurvival genes. In particular, genes involved in neurotrophin signaling and PI3K/Akt pathways were upregulated. On the contrary, proapoptotic and negative regulator of neuronal growth genes were downregulated. Moreover, nestin and GAP-43 protein levels increased in SC-GMSCs, confirming the neurogenic commitment of these cells. In conclusion, the scaffold, providing a trophic support for MSCs, may promote GMSCs differentiation toward a neuronal phenotype and survival. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 126-137, 2018.

Original languageEnglish
Pages (from-to)126-137
Number of pages12
JournalJournal of Biomedical Materials Research - Part A
Issue number1
Publication statusPublished - Jan 2018


Dive into the research topics of 'Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold A promising strategy for neuroregeneration'. Together they form a unique fingerprint.

Cite this