Translational control in the stress adaptive response of cancer cells: A novel role for the heat shock protein TRAP1

D. S. Matassa, M. R. Amoroso, I. Agliarulo, F. Maddalena, L. Sisinni, S. Paladino, S. Romano, M. F. Romano, V. Sagar, F. Loreni, M. Landriscina, F. Esposito

Research output: Contribution to journalArticle

Abstract

TNF receptor-associated protein 1 (TRAP1), the main mitochondrial member of the heat shock protein (HSP) 90 family, is induced in most tumor types and is involved in the regulation of proteostasis in the mitochondria of tumor cells through the control of folding and stability of selective proteins, such as Cyclophilin D and Sorcin. Notably, we have recently demonstrated that TRAP1 also interacts with the regulatory protein particle TBP7 in the endoplasmic reticulum (ER), where it is involved in a further extramitochondrial quality control of nuclear-encoded mitochondrial proteins through the regulation of their ubiquitination/ degradation. Here we show that TRAP1 is involved in the translational control of cancer cells through an attenuation of global protein synthesis, as evidenced by an inverse correlation between TRAP1 expression and ubiquitination/degradation of nascent stress-protective client proteins. This study demonstrates for the first time that TRAP1 is associated with ribosomes and with several translation factors in colon carcinoma cells and, remarkably, is found co-upregulated with some components of the translational apparatus (eIF4A, eIF4E, eEF1A and eEF1G) in human colorectal cancers, with potential new opportunities for therapeutic intervention in humans. Moreover, TRAP1 regulates the rate of protein synthesis through the eIF2a pathway either under basal conditions or under stress, favoring the activation of GCN2 and PERK kinases, with consequent phosphorylation of eIF2a and attenuation of cap-dependent translation. This enhances the synthesis of selective stress-responsive proteins, such as the transcription factor ATF4 and its downstream effectors BiP/Grp78, and the cystine antiporter system xCT, thereby providing protection against ER stress, oxidative damage and nutrient deprivation. Accordingly, TRAP1 silencing sensitizes cells to apoptosis induced by novel antitumoral drugs that inhibit cap-dependent translation, such as ribavirin or 4EGI-1, and reduces the ability of cells to migrate through the pores of transwell filters. These new findings target the TRAP1 network in the development of novel anti-cancer strategies.

Original languageEnglish
Article numbere851
JournalCell Death and Disease
Volume4
Issue number10
DOIs
Publication statusPublished - Oct 2013

Keywords

  • Co-translational ubiquitination
  • Protein quality control
  • Protein synthesis
  • Stress-adaptive response
  • TRAP1

ASJC Scopus subject areas

  • Cell Biology
  • Immunology
  • Cancer Research
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Translational control in the stress adaptive response of cancer cells: A novel role for the heat shock protein TRAP1'. Together they form a unique fingerprint.

  • Cite this

    Matassa, D. S., Amoroso, M. R., Agliarulo, I., Maddalena, F., Sisinni, L., Paladino, S., Romano, S., Romano, M. F., Sagar, V., Loreni, F., Landriscina, M., & Esposito, F. (2013). Translational control in the stress adaptive response of cancer cells: A novel role for the heat shock protein TRAP1. Cell Death and Disease, 4(10), [e851]. https://doi.org/10.1038/cddis.2013.379