TY - JOUR
T1 - Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation
T2 - Effects of sleep/wake history and background activity
AU - Vyazovskiy, Vladyslav V.
AU - Faraguna, Ugo
AU - Cirelli, Chiara
AU - Tononi, Giulio
PY - 2009/4
Y1 - 2009/4
N2 - In humans, non-rapid eye movement (NREM) sleep slow waves occur not only spontaneously but can also be induced by transcranial magnetic stimulation. Here we investigated whether slow waves can also be induced by intracortical electrical stimulation during sleep in rats. Intracortical local field potential (LFP) recordings were obtained from several cortical locations while the frontal or the parietal area was stimulated intracortically with brief (0.1 ms) electrical pulses. Recordings were performed in early sleep (1st 2-3 h after light onset) and late sleep (6-8 h after light onset). The stimuli reliably triggered LFP potentials that were visually indistinguishable from naturally occurring slow waves. The induced slow waves shared the following features with spontaneous slow waves: they were followed by spindling activity in the same frequency range (∼15 Hz) as spontaneously occurring sleep spindles; they propagated through the neocortex from the area of the stimulation; and compared with late sleep, waves triggered during early sleep were larger, had steeper slopes and fewer multipeaks. Peristimulus background spontaneous activity had a profound influence on the amplitude of the induced slow waves: they were virtually absent if the stimulus was delivered immediately after the spontaneous slow wave. These results show that in the rat a volley of electrical activity that is sufficiently strong to excite and recruit a large cortical neuronal population is capable of inducing slow waves during natural sleep.
AB - In humans, non-rapid eye movement (NREM) sleep slow waves occur not only spontaneously but can also be induced by transcranial magnetic stimulation. Here we investigated whether slow waves can also be induced by intracortical electrical stimulation during sleep in rats. Intracortical local field potential (LFP) recordings were obtained from several cortical locations while the frontal or the parietal area was stimulated intracortically with brief (0.1 ms) electrical pulses. Recordings were performed in early sleep (1st 2-3 h after light onset) and late sleep (6-8 h after light onset). The stimuli reliably triggered LFP potentials that were visually indistinguishable from naturally occurring slow waves. The induced slow waves shared the following features with spontaneous slow waves: they were followed by spindling activity in the same frequency range (∼15 Hz) as spontaneously occurring sleep spindles; they propagated through the neocortex from the area of the stimulation; and compared with late sleep, waves triggered during early sleep were larger, had steeper slopes and fewer multipeaks. Peristimulus background spontaneous activity had a profound influence on the amplitude of the induced slow waves: they were virtually absent if the stimulus was delivered immediately after the spontaneous slow wave. These results show that in the rat a volley of electrical activity that is sufficiently strong to excite and recruit a large cortical neuronal population is capable of inducing slow waves during natural sleep.
UR - http://www.scopus.com/inward/record.url?scp=65949085138&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65949085138&partnerID=8YFLogxK
U2 - 10.1152/jn.91157.2008
DO - 10.1152/jn.91157.2008
M3 - Article
C2 - 19164101
AN - SCOPUS:65949085138
VL - 101
SP - 1921
EP - 1931
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
SN - 0022-3077
IS - 4
ER -