TY - JOUR
T1 - Tuning of a Basic Coordination Pattern Constructs Straight-Ahead and Curved Walking in Humans
AU - Courtine, Grégoire
AU - Schieppati, Marco
PY - 2004/4
Y1 - 2004/4
N2 - We tested the hypothesis that common principles govern the production of the locomotor patterns for both straight-ahead and curved walking. Whole body movement recordings showed that continuous curved walking implies substantial, limb-specific changes in numerous gait descriptors. Principal component analysis (PCA) was used to uncover the spatiotempporal structure of coordination among lower limb segments. PCA revealed that the same kinematic law accounted for the coordination among lower limb segments during both straight-ahead and curved walking, in both the frontal and sagittal planes: turn-related changes in the complex behavior of the inner and outer limbs were captured in limb-specific adaptive tuning of coordination patterns. PCA was also performed on a data set including all elevation angles of limb segments and trunk, the encompassing 13 degrees of freedom. The results showed that both straight-ahead and curved walking were low dimensional, given that 3 principal components accounted for more than 90% of data variance. Furthermore, the time course of the principal components was unchanged by curved walking, thereby indicating invariant coordination patterns among all body segments during straight-ahead and curved walking. Nevertheless, limb- and turn-dependent tuning of the coordination patterns encoded the adaptations of the limb kinematics to the actual direction of the walking body. Absence of vision had no significant effect on the intersegmental coordination during either straight-ahead or curved walking. Our findings that kinematic laws, probably emerging from the interaction of spinal neutral networks and mechanical oscillators, subserve the production of both straight-ahead and curved walking. During locomotion, the descending command tunes basic spinal networks so as to produce the changes in amplitude and phase relationships of the spinal output, sufficient to achieve the body turn.
AB - We tested the hypothesis that common principles govern the production of the locomotor patterns for both straight-ahead and curved walking. Whole body movement recordings showed that continuous curved walking implies substantial, limb-specific changes in numerous gait descriptors. Principal component analysis (PCA) was used to uncover the spatiotempporal structure of coordination among lower limb segments. PCA revealed that the same kinematic law accounted for the coordination among lower limb segments during both straight-ahead and curved walking, in both the frontal and sagittal planes: turn-related changes in the complex behavior of the inner and outer limbs were captured in limb-specific adaptive tuning of coordination patterns. PCA was also performed on a data set including all elevation angles of limb segments and trunk, the encompassing 13 degrees of freedom. The results showed that both straight-ahead and curved walking were low dimensional, given that 3 principal components accounted for more than 90% of data variance. Furthermore, the time course of the principal components was unchanged by curved walking, thereby indicating invariant coordination patterns among all body segments during straight-ahead and curved walking. Nevertheless, limb- and turn-dependent tuning of the coordination patterns encoded the adaptations of the limb kinematics to the actual direction of the walking body. Absence of vision had no significant effect on the intersegmental coordination during either straight-ahead or curved walking. Our findings that kinematic laws, probably emerging from the interaction of spinal neutral networks and mechanical oscillators, subserve the production of both straight-ahead and curved walking. During locomotion, the descending command tunes basic spinal networks so as to produce the changes in amplitude and phase relationships of the spinal output, sufficient to achieve the body turn.
UR - http://www.scopus.com/inward/record.url?scp=1542406043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1542406043&partnerID=8YFLogxK
U2 - 10.1152/jn.00817.2003
DO - 10.1152/jn.00817.2003
M3 - Article
C2 - 14668296
AN - SCOPUS:1542406043
VL - 91
SP - 1524
EP - 1535
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
SN - 0022-3077
IS - 4
ER -