Ultrastructural characterisation of a nuclear domain highly enriched in survival of motor neuron (SMN) protein

Manuela Malatesta, Catia Scassellati, Gunter Meister, Oliver Plöttner, Dirk Bühler, Gabriele Sowa, Terence E. Martin, Eva Keidel, Utz Fischer, Stanislav Fakan

Research output: Contribution to journalArticlepeer-review


Mutations in the survival of motor neuron (SMN) gene are the major cause of spinal muscular atrophy (SMA). The SMN gene encodes a 38-kDa protein that localises in the cytoplasm and in nuclear bodies termed Gemini of coiled bodies (gems). When visualised by immunofluorescence microscopy, gems often appeared either in close proximity to, or entirely overlapping with coiled (Cajal) bodies (CBs) implying a possible functional relationship between these nuclear domains. With the aim of identifying subnuclear compartments corresponding to gems, we have investigated the intranuclear localisation of SMN and of its interacting protein Gemin2 by immunoelectron microscopy in cultured cells and in liver cells of hibernating dormouse. These antigens are highly enriched in round-shaped electron-dense fibro-granular clusters (EFGCs), which also display a biochemical composition similar to gems visualised by immunofluorescence microscopy. Our data reveal a novel SMN/Gemin2 containing nuclear domain and support the idea that it represents the structural counterpart of gems seen in the light microscope.

Original languageEnglish
Pages (from-to)312-321
Number of pages10
JournalExperimental Cell Research
Issue number2
Publication statusPublished - Jan 15 2004


  • Gems
  • Immunoelectron microscopy
  • SMN protein
  • Subnuclear domains

ASJC Scopus subject areas

  • Cell Biology


Dive into the research topics of 'Ultrastructural characterisation of a nuclear domain highly enriched in survival of motor neuron (SMN) protein'. Together they form a unique fingerprint.

Cite this