Understanding the Impact of Aberrant Splicing in Coagulation Factor V Deficiency

Research output: Contribution to journalArticlepeer-review


Rare inherited coagulation disorders (RICDs) are congenital deficiencies of the plasma proteins that are involved in blood coagulation, which generally lead to lifelong bleeding manifestations. These diseases are generally qualitative and/or quantitative defects that are associated with monoallelic or biallelic mutations in the relevant gene. Among RICDs, factor V (FV) deficiency is one of the least characterized at the molecular level. Here, we investigated four unrelated patients with reduced plasma FV levels (three severe, one mild), which were associated with a moderately severe bleeding tendency. Sequence analysis of the FV gene identified seven different variants, five hitherto unknown (p.D1669G, c.5789-11C>A, c.5789-12C>A, c.5789-5T>G, and c.6528G>C), and two previously reported (c.158+1G>A and c.5789G>A). The possible pathogenic role of the newly identified missense variant was studied by in silico approaches. The remaining six genetic defects (all putative splicing mutations) were investigated for their possible effects on pre-mRNA splicing by transient transfection experiments in HeLa cells with plasmids expressing appropriate hybrid minigenes. The preparation of minigene constructs was instrumental to demonstrate that the two adjacent variants c.5789-11C>A and c.5789-12C>A are indeed present in cis in the analyzed FV-deficient patient (thus leading to the c.5789-11_12CC>AA mutation). Ex vivo experiments demonstrated that each variant causes either a skipping of the relevant exon or the activation of cryptic splice sites (exonic or intronic), eventually leading to the introduction of a premature termination codon.

Original languageEnglish
Article numberE910
JournalInternational Journal of Molecular Sciences
Issue number4
Publication statusPublished - Feb 20 2019


  • coagulation factor V
  • factor V deficiency
  • minigene expression experiments
  • mutational spectrum
  • splicing mutations

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Understanding the Impact of Aberrant Splicing in Coagulation Factor V Deficiency'. Together they form a unique fingerprint.

Cite this