Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines

I. Rimoldi, V. Coccè, G. Facchetti, G. Alessandri, A.T. Brini, F. Sisto, E. Parati, L. Cavicchini, G. Lucchini, F. Petrella, E. Ciusani, A. Pessina

Research output: Contribution to journalArticle

Abstract

In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 ± 9.57 μM versus 34.66 ± 7.65 μM for CisPt) and U87 MG glioblastoma (19.85 ± 0.97 μM versus 54.14 ± 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50 = 71.9 ± 15.1 μM for caPt(II)-complex and 8.7 ± 4.5 μM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery. © 2018 Elsevier Masson SAS
Original languageEnglish
Pages (from-to)111-118
Number of pages8
JournalBiomedicine and Pharmacotherapy
Volume108
DOIs
Publication statusPublished - 2018

Fingerprint

Platinum
Cisplatin
Cell Line
Neoplasms
Mesothelioma
Glioblastoma
Tumor Cell Line
Mesenchymal Stromal Cells
Pharmaceutical Preparations
Inhibitory Concentration 50
In Vitro Techniques

Keywords

  • Cationic platinum (II)-complex
  • Cisplatin
  • Drug delivery
  • Glioblastoma
  • Mesenchymal stromal cells
  • Mesothelioma
  • cation
  • cisplatin
  • paclitaxel
  • platinum complex
  • adipose tissue
  • antiangiogenic activity
  • antineoplastic activity
  • antiproliferative activity
  • Article
  • cell lysate
  • cell proliferation
  • cell viability
  • CFPAC-1 cell line
  • chemosensitivity
  • concentration response
  • controlled study
  • drug cytotoxicity
  • drug delivery system
  • drug release
  • drug stability
  • drug uptake
  • glioblastoma
  • human
  • human cell
  • HUVEC cell line
  • IC50
  • in vitro study
  • mesenchymal stroma cell
  • NCI-H28 cell line
  • pancreas adenocarcinoma
  • pleura mesothelioma
  • priority journal
  • U-87MG ATCC cell line

Cite this

Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines. / Rimoldi, I.; Coccè, V.; Facchetti, G.; Alessandri, G.; Brini, A.T.; Sisto, F.; Parati, E.; Cavicchini, L.; Lucchini, G.; Petrella, F.; Ciusani, E.; Pessina, A.

In: Biomedicine and Pharmacotherapy, Vol. 108, 2018, p. 111-118.

Research output: Contribution to journalArticle

Rimoldi, I. ; Coccè, V. ; Facchetti, G. ; Alessandri, G. ; Brini, A.T. ; Sisto, F. ; Parati, E. ; Cavicchini, L. ; Lucchini, G. ; Petrella, F. ; Ciusani, E. ; Pessina, A. / Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines. In: Biomedicine and Pharmacotherapy. 2018 ; Vol. 108. pp. 111-118.
@article{ee8ecddb26654537b04e904bde96f267,
title = "Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines",
abstract = "In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 ± 9.57 μM versus 34.66 ± 7.65 μM for CisPt) and U87 MG glioblastoma (19.85 ± 0.97 μM versus 54.14 ± 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50 = 71.9 ± 15.1 μM for caPt(II)-complex and 8.7 ± 4.5 μM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery. {\circledC} 2018 Elsevier Masson SAS",
keywords = "Cationic platinum (II)-complex, Cisplatin, Drug delivery, Glioblastoma, Mesenchymal stromal cells, Mesothelioma, cation, cisplatin, paclitaxel, platinum complex, adipose tissue, antiangiogenic activity, antineoplastic activity, antiproliferative activity, Article, cell lysate, cell proliferation, cell viability, CFPAC-1 cell line, chemosensitivity, concentration response, controlled study, drug cytotoxicity, drug delivery system, drug release, drug stability, drug uptake, glioblastoma, human, human cell, HUVEC cell line, IC50, in vitro study, mesenchymal stroma cell, NCI-H28 cell line, pancreas adenocarcinoma, pleura mesothelioma, priority journal, U-87MG ATCC cell line",
author = "I. Rimoldi and V. Cocc{\`e} and G. Facchetti and G. Alessandri and A.T. Brini and F. Sisto and E. Parati and L. Cavicchini and G. Lucchini and F. Petrella and E. Ciusani and A. Pessina",
note = "Cited By :1 Export Date: 5 February 2019 CODEN: BIPHE Correspondence Address: Rimoldi, I.; Department of Pharmaceutical Science, University of Milan, Via Venezian 21, Italy; email: isabella.rimoldi@unimi.it Chemicals/CAS: cisplatin, 15663-27-1, 26035-31-4, 96081-74-2; paclitaxel, 33069-62-4 Manufacturers: Fresenius Kabi, Italy; Sigma Aldrich, United States References: Facchetti, G., Petrella, F., Spaggiari, L., Rimoldi, I., Malignant Pleural Mesothelioma: state of the art and advanced cell therapy (2017) Eur. J. Med. Chem., 142, pp. 266-270; Roberts, N.B., Wadajkar, A.S., Winkles, J.A., Davila, E., Kim, A.J., Woodworth, G.F., Repurposing platinum-based chemotherapies for multi-modal treatment of glioblastoma (2016) OncoImmunology, 5 (9), p. e1208876; Bishal, M., Ravi, P.S., Natural anti-cancer agents: implications in gemcitabine-resistant pancreatic Cancer treatment (2017) Mini-Rev. Med. Chem., 17 (11), pp. 920-927; McDonald, J.C., Epidemiology of malignant mesothelioma—an outline (2010) Ann. Occup. Hyg., 54 (8), pp. 851-857; Novello, S., Pinto, C., Torri, V., Porcu, L., Di Maio, M., Tiseo, M., Ceresoli, G., Scagliotti, G., The third italian consensus conference for malignant pleural mesothelioma: state of the art and recommendations (2016) Crit. Rev. Oncol. Hematol., 104, pp. 9-20; Zanellato, I., Bonarrigo, I., Gabano, E., Ravera, M., Margiotta, N., Betta, P.-G., Osella, D., Metallo-drugs in the treatment of malignant pleural mesothelioma (2012) Inorg. Chim. Acta Rev., 393, pp. 64-74; Aroui, S., Dardevet, L., Najlaoui, F., Kammoun, M., Laajimi, A., Fetoui, H., De Waard, M., Kenani, A., PTEN-regulated AKT/FoxO3a/Bim signaling contributes to Human cell glioblastoma apoptosis by platinum-maurocalcin conjugate (2016) Int. J. Biochem. Cell Biol., 77, pp. 15-22; Aroui, S., Dardevet, L., Ajmia, W.B., de Boisvilliers, M., Perrin, F., Laajimi, A., Boumendjel, A., De Waard, M., A novel platinum–maurocalcine conjugate induces apoptosis of human glioblastoma cells by acting through the ROS-ERK/AKT-p53 pathway (2015) Mol. Pharm., 12 (12), pp. 4336-4348; Safieh, E., Mina, H., Soodabeh, S., Mina, M., Gordon, A.F., Majid, G.-M., Seyed Mahdi, H., Amir, A., Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic cancer (2017) Curr. Med. Chem., 24 (13), pp. 1321-1331; Arumugam, T., Ramachandran, V., Fournier, K.F., Wang, H., Marquis, L., Abbruzzese, J.L., Gallick, G.E., Choi, W., Epithelial to mesenchymal transition contributes to drug resistance in pancreatic Cancer (2009) Cancer Res., 69, pp. 5820-5828; Park, G.Y., Wilson, J.J., Song, Y., Lippard, S.J., Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile (2012) PNAS, 109 (30), pp. 11987-11992; Wang, B., Wang, Z., Ai, F., Tang, W.K., Zhu, G., A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition (2015) J. Inorg. Biochem., 142, pp. 118-125; Pages, B.J., Sakoff, J., Gilbert, J., Zhang, Y., Li, F., Preston, D., Crowley, J.D., Aldrich-Wright, J.R., Investigating the cytotoxicity of platinum(II) complexes incorporating bidentate pyridyl-1,2,3-triazole “click” ligands (2016) J. Inorg. Biochem., 165, pp. 92-99; Ferri, N., Facchetti, G., Pellegrino, S., Pini, E., Ricci, C., Curigliano, G., Rimoldi, I., Promising antiproliferative platinum(II) complexes based on imidazole moiety: synthesis, evaluation in HCT-116 cancer cell line and interaction with Ctr-1 Met-rich domain (2015) Bioorg. Med. Chem., 23, pp. 2538-2547; Rimoldi, I., Facchetti, G., Lucchini, G., Castiglioni, E., Marchian{\`o}, S., Ferri, N., In vitro anticancer activity evaluation of new cationic platinum(II) complexes based on imidazole moiety (2017) Bioorg. Med. Chem., 25 (6), pp. 1907-1913; Bonomi, A., Sordi, V., Dugnani, E., Ceserani, V., Dossena, M., Cocc{\`e}, V., Cavicchini, L., Pessina, A., Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells (2015) Cytotherapy, 17 (12), pp. 1687-1695; Bonomi, A., Cocc{\`e}, V., Cavicchini, L., Sisto, F., Dossena, M., Balzarini, P., Portolani, N., Pessina, A., Adipose tissue-derived stromal cells primed in vitro with paclitaxel acquire anti-tumor activity (2013) Int. J. Immunopathol. Pharmacol., 26, pp. 33-41; Valentina, C., Luigi, B., Maria Laura, F., Luisa, P., Emilio, C., Anna Teresa, B., Francesca, S., Augusto, P., Fluorescent immortalized human adipose derived stromal cells (hASCs-TS/GFP+) for studying cell drug delivery mediated by microvesicles (2017) Anticancer Agents Med. Chem., 17, pp. 1-8; Pessina, A., Bonomi, A., Cocc{\`e}, V., Invernici, G., Navone, S., Cavicchini, L., Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy (2011) PLoS One, 6 (12), p. e28321; Petrella, F., Cocc{\`e}, V., Masia, C., Milani, M., Sal{\`e}, E.O., Alessandri, G., Parati, E., Spaggiari, L., Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells (2017) Biomed. Pharmacother., 87, pp. 755-758; Pascucci, L., Cocc{\`e}, V., Bonomi, A., Ami, D., Ceccarelli, P., Ciusani, E., Vigan{\`o}, L., Pessina, A., Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery (2014) J. Control. Release, 192, pp. 262-270; Pessina, A., Leonetti, C., Artuso, S., Benetti, A., Dessy, E., Pascucci, L., Passeri, D., Alessandri, G., Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model (2015) J. Exp. Clin. Cancer Res., 34 (1), p. 82; Schuldes, H., Bade, S., Knobloch, J., Jonas, D., Loss of in vitro cytotoxicity of cisplatin after storage as stock solution in cell culture medium at various temperatures (1997) Cancer, 79 (9), pp. 1723-1728; Phelps, R.M., Johnson, B.E., Ihde, D.C., Gazdar, A.F., Carbone, D.P., McClintock, P.R., Linnoila, R.I., Mulshine, J.L., NCI-navy medical oncology branch cell line data base (1996) J. Cell. Biochem. Suppl., 24, pp. 32-91; Fogh, J., Fogh, J.M., Orfeo, T., One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice (1977) J. Natl. Cancer Inst., 59 (1), pp. 221-226; Schoumacher, R.A., Ram, J., Iannuzzi, M.C., Bradbury, N.A., Wallace, R.W., Hon, C.T., Kelly, D.R., Rado, T.A., A cystic fibrosis pancreatic adenocarcinoma cell line (1990) Proceedings of the National Academy of Sciences of the United States of America, 87 (10), pp. 4012-4016; Bianchi, F., Maioli, M., Leonardi, E., Olivi, E., Pasquinelli, G., Valente, S., Mendez, A.J., Ventura, C., A New nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates (2013) Cell Transplant., 22 (11), pp. 2063-2077; Ceserani, V., Ferri, A., Berenzi, A., Benetti, A., Ciusani, E., Pascucci, L., Bazzucchi, C., Alessandri, G., Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells (2016) Vascular Cell, 8, p. 3; Pessina, A., Bonomi, A., Cocc{\`e}, V., Invernici, G., Navone, S., Cavicchini, L., Sisto, F., Alessandri, G., Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy (2011) PLoS One, 6 (12), p. e28321; Mossman, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65; Reed, H., Muench, A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27 (3), pp. 493-497; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65 (1), pp. 55-63; Ferri, N., Cazzaniga, S., Mazzarella, L., Curigliano, G., Lucchini, G., Zerla, D., Gandolfi, R., Rimoldi, I., Cytotoxic effect of (1-methyl-1H-imidazol-2-yl)-methanamine and its derivatives in PtII complexes on human carcinoma cell lines: A comparative study with cisplatin (2013) Bioorg. Med. Chem., 21 (8), pp. 2379-2386; Porta, F., Facchetti, G., Ferri, N., Gelain, A., Meneghetti, F., Villa, S., Barlocco, D., Rimoldi, I., An in vivo active 1,2,5-oxadiazole Pt(II) complex: a promising anticancer agent endowed with STAT3 inhibitory properties (2017) Eur. J. Med. Chem., 131, pp. 196-206; Alessandri, G., Chirivi, R.G.S., Fiorentini, S., Dossi, R., Bonardelli, S., Giulini, S.M., Zanetta, G., Bani, M.R., Phenotypic and functional characteristics of tumour-derived microvascular endothelial cells (1999) Clin. Exp. Metastasis, 17 (8), pp. 655-662; Kleinman, H.K., Martin, G.R., Matrigel: Basement membrane matrix with biological activity (2005) Semin. Cancer Biol., 15 (5), pp. 378-386; Shen, F.-Z., Wang, J., Liang, J., Mu, K., Hou, J.-Y., Wang, Y.-T., Low-dose metronomic chemotherapy with cisplatin: can it suppress angiogenesis in H22 hepatocarcinoma cells? (2010) Int. J. Exp. Pathol., 91 (1), pp. 10-16",
year = "2018",
doi = "10.1016/j.biopha.2018.09.040",
language = "English",
volume = "108",
pages = "111--118",
journal = "Biomedicine and Pharmacotherapy",
issn = "0753-3322",
publisher = "Elsevier Masson SAS",

}

TY - JOUR

T1 - Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines

AU - Rimoldi, I.

AU - Coccè, V.

AU - Facchetti, G.

AU - Alessandri, G.

AU - Brini, A.T.

AU - Sisto, F.

AU - Parati, E.

AU - Cavicchini, L.

AU - Lucchini, G.

AU - Petrella, F.

AU - Ciusani, E.

AU - Pessina, A.

N1 - Cited By :1 Export Date: 5 February 2019 CODEN: BIPHE Correspondence Address: Rimoldi, I.; Department of Pharmaceutical Science, University of Milan, Via Venezian 21, Italy; email: isabella.rimoldi@unimi.it Chemicals/CAS: cisplatin, 15663-27-1, 26035-31-4, 96081-74-2; paclitaxel, 33069-62-4 Manufacturers: Fresenius Kabi, Italy; Sigma Aldrich, United States References: Facchetti, G., Petrella, F., Spaggiari, L., Rimoldi, I., Malignant Pleural Mesothelioma: state of the art and advanced cell therapy (2017) Eur. J. Med. Chem., 142, pp. 266-270; Roberts, N.B., Wadajkar, A.S., Winkles, J.A., Davila, E., Kim, A.J., Woodworth, G.F., Repurposing platinum-based chemotherapies for multi-modal treatment of glioblastoma (2016) OncoImmunology, 5 (9), p. e1208876; Bishal, M., Ravi, P.S., Natural anti-cancer agents: implications in gemcitabine-resistant pancreatic Cancer treatment (2017) Mini-Rev. Med. Chem., 17 (11), pp. 920-927; McDonald, J.C., Epidemiology of malignant mesothelioma—an outline (2010) Ann. Occup. Hyg., 54 (8), pp. 851-857; Novello, S., Pinto, C., Torri, V., Porcu, L., Di Maio, M., Tiseo, M., Ceresoli, G., Scagliotti, G., The third italian consensus conference for malignant pleural mesothelioma: state of the art and recommendations (2016) Crit. Rev. Oncol. Hematol., 104, pp. 9-20; Zanellato, I., Bonarrigo, I., Gabano, E., Ravera, M., Margiotta, N., Betta, P.-G., Osella, D., Metallo-drugs in the treatment of malignant pleural mesothelioma (2012) Inorg. Chim. Acta Rev., 393, pp. 64-74; Aroui, S., Dardevet, L., Najlaoui, F., Kammoun, M., Laajimi, A., Fetoui, H., De Waard, M., Kenani, A., PTEN-regulated AKT/FoxO3a/Bim signaling contributes to Human cell glioblastoma apoptosis by platinum-maurocalcin conjugate (2016) Int. J. Biochem. Cell Biol., 77, pp. 15-22; Aroui, S., Dardevet, L., Ajmia, W.B., de Boisvilliers, M., Perrin, F., Laajimi, A., Boumendjel, A., De Waard, M., A novel platinum–maurocalcine conjugate induces apoptosis of human glioblastoma cells by acting through the ROS-ERK/AKT-p53 pathway (2015) Mol. Pharm., 12 (12), pp. 4336-4348; Safieh, E., Mina, H., Soodabeh, S., Mina, M., Gordon, A.F., Majid, G.-M., Seyed Mahdi, H., Amir, A., Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic cancer (2017) Curr. Med. Chem., 24 (13), pp. 1321-1331; Arumugam, T., Ramachandran, V., Fournier, K.F., Wang, H., Marquis, L., Abbruzzese, J.L., Gallick, G.E., Choi, W., Epithelial to mesenchymal transition contributes to drug resistance in pancreatic Cancer (2009) Cancer Res., 69, pp. 5820-5828; Park, G.Y., Wilson, J.J., Song, Y., Lippard, S.J., Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile (2012) PNAS, 109 (30), pp. 11987-11992; Wang, B., Wang, Z., Ai, F., Tang, W.K., Zhu, G., A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition (2015) J. Inorg. Biochem., 142, pp. 118-125; Pages, B.J., Sakoff, J., Gilbert, J., Zhang, Y., Li, F., Preston, D., Crowley, J.D., Aldrich-Wright, J.R., Investigating the cytotoxicity of platinum(II) complexes incorporating bidentate pyridyl-1,2,3-triazole “click” ligands (2016) J. Inorg. Biochem., 165, pp. 92-99; Ferri, N., Facchetti, G., Pellegrino, S., Pini, E., Ricci, C., Curigliano, G., Rimoldi, I., Promising antiproliferative platinum(II) complexes based on imidazole moiety: synthesis, evaluation in HCT-116 cancer cell line and interaction with Ctr-1 Met-rich domain (2015) Bioorg. Med. Chem., 23, pp. 2538-2547; Rimoldi, I., Facchetti, G., Lucchini, G., Castiglioni, E., Marchianò, S., Ferri, N., In vitro anticancer activity evaluation of new cationic platinum(II) complexes based on imidazole moiety (2017) Bioorg. Med. Chem., 25 (6), pp. 1907-1913; Bonomi, A., Sordi, V., Dugnani, E., Ceserani, V., Dossena, M., Coccè, V., Cavicchini, L., Pessina, A., Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells (2015) Cytotherapy, 17 (12), pp. 1687-1695; Bonomi, A., Coccè, V., Cavicchini, L., Sisto, F., Dossena, M., Balzarini, P., Portolani, N., Pessina, A., Adipose tissue-derived stromal cells primed in vitro with paclitaxel acquire anti-tumor activity (2013) Int. J. Immunopathol. Pharmacol., 26, pp. 33-41; Valentina, C., Luigi, B., Maria Laura, F., Luisa, P., Emilio, C., Anna Teresa, B., Francesca, S., Augusto, P., Fluorescent immortalized human adipose derived stromal cells (hASCs-TS/GFP+) for studying cell drug delivery mediated by microvesicles (2017) Anticancer Agents Med. Chem., 17, pp. 1-8; Pessina, A., Bonomi, A., Coccè, V., Invernici, G., Navone, S., Cavicchini, L., Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy (2011) PLoS One, 6 (12), p. e28321; Petrella, F., Coccè, V., Masia, C., Milani, M., Salè, E.O., Alessandri, G., Parati, E., Spaggiari, L., Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells (2017) Biomed. Pharmacother., 87, pp. 755-758; Pascucci, L., Coccè, V., Bonomi, A., Ami, D., Ceccarelli, P., Ciusani, E., Viganò, L., Pessina, A., Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery (2014) J. Control. Release, 192, pp. 262-270; Pessina, A., Leonetti, C., Artuso, S., Benetti, A., Dessy, E., Pascucci, L., Passeri, D., Alessandri, G., Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model (2015) J. Exp. Clin. Cancer Res., 34 (1), p. 82; Schuldes, H., Bade, S., Knobloch, J., Jonas, D., Loss of in vitro cytotoxicity of cisplatin after storage as stock solution in cell culture medium at various temperatures (1997) Cancer, 79 (9), pp. 1723-1728; Phelps, R.M., Johnson, B.E., Ihde, D.C., Gazdar, A.F., Carbone, D.P., McClintock, P.R., Linnoila, R.I., Mulshine, J.L., NCI-navy medical oncology branch cell line data base (1996) J. Cell. Biochem. Suppl., 24, pp. 32-91; Fogh, J., Fogh, J.M., Orfeo, T., One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice (1977) J. Natl. Cancer Inst., 59 (1), pp. 221-226; Schoumacher, R.A., Ram, J., Iannuzzi, M.C., Bradbury, N.A., Wallace, R.W., Hon, C.T., Kelly, D.R., Rado, T.A., A cystic fibrosis pancreatic adenocarcinoma cell line (1990) Proceedings of the National Academy of Sciences of the United States of America, 87 (10), pp. 4012-4016; Bianchi, F., Maioli, M., Leonardi, E., Olivi, E., Pasquinelli, G., Valente, S., Mendez, A.J., Ventura, C., A New nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates (2013) Cell Transplant., 22 (11), pp. 2063-2077; Ceserani, V., Ferri, A., Berenzi, A., Benetti, A., Ciusani, E., Pascucci, L., Bazzucchi, C., Alessandri, G., Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells (2016) Vascular Cell, 8, p. 3; Pessina, A., Bonomi, A., Coccè, V., Invernici, G., Navone, S., Cavicchini, L., Sisto, F., Alessandri, G., Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy (2011) PLoS One, 6 (12), p. e28321; Mossman, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65; Reed, H., Muench, A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27 (3), pp. 493-497; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65 (1), pp. 55-63; Ferri, N., Cazzaniga, S., Mazzarella, L., Curigliano, G., Lucchini, G., Zerla, D., Gandolfi, R., Rimoldi, I., Cytotoxic effect of (1-methyl-1H-imidazol-2-yl)-methanamine and its derivatives in PtII complexes on human carcinoma cell lines: A comparative study with cisplatin (2013) Bioorg. Med. Chem., 21 (8), pp. 2379-2386; Porta, F., Facchetti, G., Ferri, N., Gelain, A., Meneghetti, F., Villa, S., Barlocco, D., Rimoldi, I., An in vivo active 1,2,5-oxadiazole Pt(II) complex: a promising anticancer agent endowed with STAT3 inhibitory properties (2017) Eur. J. Med. Chem., 131, pp. 196-206; Alessandri, G., Chirivi, R.G.S., Fiorentini, S., Dossi, R., Bonardelli, S., Giulini, S.M., Zanetta, G., Bani, M.R., Phenotypic and functional characteristics of tumour-derived microvascular endothelial cells (1999) Clin. Exp. Metastasis, 17 (8), pp. 655-662; Kleinman, H.K., Martin, G.R., Matrigel: Basement membrane matrix with biological activity (2005) Semin. Cancer Biol., 15 (5), pp. 378-386; Shen, F.-Z., Wang, J., Liang, J., Mu, K., Hou, J.-Y., Wang, Y.-T., Low-dose metronomic chemotherapy with cisplatin: can it suppress angiogenesis in H22 hepatocarcinoma cells? (2010) Int. J. Exp. Pathol., 91 (1), pp. 10-16

PY - 2018

Y1 - 2018

N2 - In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 ± 9.57 μM versus 34.66 ± 7.65 μM for CisPt) and U87 MG glioblastoma (19.85 ± 0.97 μM versus 54.14 ± 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50 = 71.9 ± 15.1 μM for caPt(II)-complex and 8.7 ± 4.5 μM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery. © 2018 Elsevier Masson SAS

AB - In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 ± 9.57 μM versus 34.66 ± 7.65 μM for CisPt) and U87 MG glioblastoma (19.85 ± 0.97 μM versus 54.14 ± 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50 = 71.9 ± 15.1 μM for caPt(II)-complex and 8.7 ± 4.5 μM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery. © 2018 Elsevier Masson SAS

KW - Cationic platinum (II)-complex

KW - Cisplatin

KW - Drug delivery

KW - Glioblastoma

KW - Mesenchymal stromal cells

KW - Mesothelioma

KW - cation

KW - cisplatin

KW - paclitaxel

KW - platinum complex

KW - adipose tissue

KW - antiangiogenic activity

KW - antineoplastic activity

KW - antiproliferative activity

KW - Article

KW - cell lysate

KW - cell proliferation

KW - cell viability

KW - CFPAC-1 cell line

KW - chemosensitivity

KW - concentration response

KW - controlled study

KW - drug cytotoxicity

KW - drug delivery system

KW - drug release

KW - drug stability

KW - drug uptake

KW - glioblastoma

KW - human

KW - human cell

KW - HUVEC cell line

KW - IC50

KW - in vitro study

KW - mesenchymal stroma cell

KW - NCI-H28 cell line

KW - pancreas adenocarcinoma

KW - pleura mesothelioma

KW - priority journal

KW - U-87MG ATCC cell line

U2 - 10.1016/j.biopha.2018.09.040

DO - 10.1016/j.biopha.2018.09.040

M3 - Article

VL - 108

SP - 111

EP - 118

JO - Biomedicine and Pharmacotherapy

JF - Biomedicine and Pharmacotherapy

SN - 0753-3322

ER -