Abstract
We propose a new methodology for the estimation of Pulse Transit Time, PTT, based on the use of the seismocardiogram for the identification of the aortic valve opening, AO. This method has been implemented to obtain a first description of the AO-derived PTT beat-to-beat variability at rest and during the recovery after a cycloergometer exercise at 25W and 100W, its relation with systolic blood pressure, S(BP), and its difference with respect to variability of the Pulse Arrival Time, PAT (i.e. the BP transit time estimated by considering the ECG R peak instead of AO as proximal site). Our preliminary data indicate that 1) the fast components of the PTT variability are only marginally influenced by respiration; 2) only the slower components of the PTT variability are correlated with systolic BP; 3) major differences exist in the dynamics of PTT and PAT, being PAT variability significantly larger and importantly influenced by the beat-to-beat changes occurring in the Pre Ejection Period.
Original language | English |
---|---|
Title of host publication | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 7184-7187 |
Number of pages | 4 |
Volume | 2015-November |
ISBN (Print) | 9781424492718 |
DOIs | |
Publication status | Published - Nov 4 2015 |
Event | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy Duration: Aug 25 2015 → Aug 29 2015 |
Other
Other | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 8/25/15 → 8/29/15 |
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition
- Signal Processing
- Biomedical Engineering
- Health Informatics