TY - JOUR
T1 - User-centred assistive SystEm for arm Functions in neUromuscuLar subjects (USEFUL)
T2 - a randomized controlled study
AU - Longatelli, Valeria
AU - Antonietti, Alberto
AU - Biffi, Emilia
AU - Diella, Eleonora
AU - D’Angelo, Maria Grazia
AU - Rossini, Mauro
AU - Molteni, Franco
AU - Bocciolone, Marco
AU - Pedrocchi, Alessandra
AU - Gandolla, Marta
N1 - Funding Information:
This work has been performed thanks to the project USEFUL (Grant No. Telethon GUP 15021) and it was partially supported by Italian Ministry of Health (Ricerca Corrente VARA “2020” to Dr. E. Biffi).
Publisher Copyright:
© 2021, The Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/12
Y1 - 2021/12
N2 - Background: Upper limb assistive devices can compensate for muscular weakness and empower the user in the execution of daily activities. Multiple devices have been recently proposed but there is still a lack in the scientific comparison of their efficacy. Methods: We conducted a cross-over multi-centric randomized controlled trial to assess the functional improvement at the upper limb level of two arms supports on 36 patients with muscular dystrophy. Participants tested a passive device (i.e., Wrex by Jaeco) and a semi-active solution for gravity compensation (i.e., Armon Ayura). We evaluated devices’ effectiveness with an externally-assessed scale (i.e., Performance of the Upper Limb-PUL-module), a self-perceived scale (i.e., Abilhand questionnaire), and a usability scale (i.e., System Usability Scale). Friedman’s test was used to assess significant functional gain for PUL module and Abilhand questionnaire. Moreover, PUL changes were compared by means of the Friedman’s test. Results: Most of the patients improved upper limb function with the use of arm supports (median PUL scores increase of 1–3 points). However, the effectiveness of each device was related to the level of residual ability of the end-user. Slightly impaired patients maintained the same independence without and with assistive devices, even if they reported reduced muscular fatigue for both devices. Moderately impaired patients enhanced their arm functionality with both devices, and they obtained higher improvements with the semi-active one (median PUL scores increase of 9 points). Finally, severely impaired subjects benefited only from the semi-active device (median PUL scores increase of 12 points). Inadequate strength was recognized as a barrier to passive devices. The usability, measured by the System Usability Scale, was evaluated by end-users “good” (70/100 points) for the passive, and “excellent” (80/100 points) for the semi-active device. Conclusions: This study demonstrated that assistive devices can improve the quality of life of people suffering from muscular dystrophy. The use of passive devices, despite being low cost and easy to use, shows limitations in the efficacy of the assistance to daily tasks, limiting the assistance to a predefined horizontal plane. The addition of one active degree of freedom improves efficacy and usability especially for medium to severe patients. Further investigations are needed to increase the evidence on the effect of arm supports on quality of life and diseases’ progression in subjects with degenerative disorders. Trial registration clinicaltrials.gov, NCT03127241, Registered 25th April 2017. The clinical trial was also registered as a post-market study at the Italian Ministry of Health.
AB - Background: Upper limb assistive devices can compensate for muscular weakness and empower the user in the execution of daily activities. Multiple devices have been recently proposed but there is still a lack in the scientific comparison of their efficacy. Methods: We conducted a cross-over multi-centric randomized controlled trial to assess the functional improvement at the upper limb level of two arms supports on 36 patients with muscular dystrophy. Participants tested a passive device (i.e., Wrex by Jaeco) and a semi-active solution for gravity compensation (i.e., Armon Ayura). We evaluated devices’ effectiveness with an externally-assessed scale (i.e., Performance of the Upper Limb-PUL-module), a self-perceived scale (i.e., Abilhand questionnaire), and a usability scale (i.e., System Usability Scale). Friedman’s test was used to assess significant functional gain for PUL module and Abilhand questionnaire. Moreover, PUL changes were compared by means of the Friedman’s test. Results: Most of the patients improved upper limb function with the use of arm supports (median PUL scores increase of 1–3 points). However, the effectiveness of each device was related to the level of residual ability of the end-user. Slightly impaired patients maintained the same independence without and with assistive devices, even if they reported reduced muscular fatigue for both devices. Moderately impaired patients enhanced their arm functionality with both devices, and they obtained higher improvements with the semi-active one (median PUL scores increase of 9 points). Finally, severely impaired subjects benefited only from the semi-active device (median PUL scores increase of 12 points). Inadequate strength was recognized as a barrier to passive devices. The usability, measured by the System Usability Scale, was evaluated by end-users “good” (70/100 points) for the passive, and “excellent” (80/100 points) for the semi-active device. Conclusions: This study demonstrated that assistive devices can improve the quality of life of people suffering from muscular dystrophy. The use of passive devices, despite being low cost and easy to use, shows limitations in the efficacy of the assistance to daily tasks, limiting the assistance to a predefined horizontal plane. The addition of one active degree of freedom improves efficacy and usability especially for medium to severe patients. Further investigations are needed to increase the evidence on the effect of arm supports on quality of life and diseases’ progression in subjects with degenerative disorders. Trial registration clinicaltrials.gov, NCT03127241, Registered 25th April 2017. The clinical trial was also registered as a post-market study at the Italian Ministry of Health.
KW - assistive device
KW - Exoskeleton
KW - neuromuscular disorders
KW - upper limb
UR - http://www.scopus.com/inward/record.url?scp=85098782405&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098782405&partnerID=8YFLogxK
U2 - 10.1186/s12984-020-00794-z
DO - 10.1186/s12984-020-00794-z
M3 - Article
AN - SCOPUS:85098782405
VL - 18
JO - Journal of NeuroEngineering and Rehabilitation
JF - Journal of NeuroEngineering and Rehabilitation
SN - 1743-0003
IS - 1
M1 - 4
ER -