@article{3d9299d3f1fa4dc39e17d89e58bfedc0,
title = "VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma",
abstract = "Background: Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. Methods: We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. Results: In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Conclusions: Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment. {\textcopyright} 2018 The Author(s).",
keywords = "Antiangiogenetic-therapy, Recurrent glioblastoma, Target therapy, VEGF isoforms, bevacizumab, tumor marker, vasculotropin 121, angiogenesis inhibitor, isoprotein, vasculotropin A, VEGFA protein, human, animal experiment, animal model, antiangiogenic therapy, Article, cancer chemotherapy, cancer recurrence, controlled study, glioblastoma, glioma, human, human cell, human tissue, male, molecularly targeted therapy, nonhuman, overall survival, progression free survival, protein blood level, protein expression, quantitative analysis, rat, tumor volume, aged, animal, blood, brain, brain tumor, drug screening, female, middle aged, mortality, nude rat, pathology, treatment outcome, tumor cell line, tumor recurrence, Aged, Angiogenesis Inhibitors, Animals, Bevacizumab, Biomarkers, Tumor, Brain, Brain Neoplasms, Cell Line, Tumor, Female, Glioblastoma, Humans, Male, Middle Aged, Neoplasm Recurrence, Local, Progression-Free Survival, Protein Isoforms, Rats, Nude, Treatment Outcome, Vascular Endothelial Growth Factor A, Xenograft Model Antitumor Assays",
author = "M. Martini and {de Pascalis}, I. and Q.G. D'Alessandris and V. Fiorentino and F. Pierconti and H.E.-S. Marei and L. Ricci-Vitiani and R. Pallini and L.M. Larocca",
note = "Cited By :2 Export Date: 12 April 2019 CODEN: BCMAC Correspondence Address: Larocca, L.M.; Universit{\`a} Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Polo Scienze Oncologiche ed Ematologiche, Istituto di Anatomia Patologica, Largo Francesco Vito 1, Italy; email: luigimaria.larocca@unicatt.it Chemicals/CAS: bevacizumab, 216974-75-3, 1438851-35-4; vasculotropin A, 489395-96-2; Angiogenesis Inhibitors; Bevacizumab; Biomarkers, Tumor; Protein Isoforms; Vascular Endothelial Growth Factor A; VEGFA protein, human Funding details: Universit{\`a} Cattolica del Sacro Cuore Funding details: Associazione Italiana per la Ricerca sul Cancro, IG 2013 N.14574 Funding text 1: Costs for scientific material was supported by Linea D1, Universit{\`a} Cattolica del Sacro Cuore, Roma (to MM, LML and RP) and by AIRC (IG 2013 N.14574 to RP and LR-V). No specific fund was received for this study. References: Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., The 2007 WHO classification of tumours of the central nervous system (2007) Acta Neuropathol, 114, pp. 97-109; Jain, R.K., di Tomaso, E., Duda, D.G., Loeffler, J.S., Sorensen, A.G., Batchelor, T.T., Angiogenesis in brain tumours (2007) Nat Rev Neurosci, 8, pp. 610-622; Huang, W.J., Chen, W.W., Zhang, X., Glioblastoma multiforme: effect of hypoxia and hypoxia inducible factors on therapeutic approaches (2016) Oncol Lett, 12, pp. 2283-2288; Brat, D.J., Castellano Sanchez, A.A., Hunter, S.B., Pecot, M., Cohen, C., Hammond, E.H., Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population (2004) Cancer Res, 64, pp. 920-927; Plate, K.H., Scholz, A., Dumont, D.J., Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited (2012) Acta Neuropathol, 124, pp. 763-775; Lombardi, G., Pambuku, A., Bellu, L., Farina, M., Della Puppa, A., Denaro, L., Effectiveness of antiangiogenic drugs in glioblastoma patients: a systematic review and meta-analysis of randomized clinical trials (2017) Crit Rev Oncol Hematol, 111, pp. 94-102; Vredenburgh, J.J., Desjardins, A., Herndon, J.E., Marcello, J., Reardon, D.A., Quinn, J.A., Bevacizumab plus irinotecan in recurrent glioblastoma multiforme (2007) J Clin Oncol, 25, pp. 4722-4729; Kreisl, T.N., Kim, L., Moore, K., Duic, P., Royce, C., Stroud, I., Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma (2009) J Clin Oncol, 27, pp. 740-745; Friedman, H.S., Prado, M.D., Wen, P.Y., Mikkelsen, T., Schiff, D., Abrey, L.E., Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma (2009) J Clin Oncol, 27, pp. 4733-4740; Chinot, O.L., Wick, W., Mason, W., Henriksson, R., Saran, F., Nishikawa, R., Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma (2014) N Engl J Med, 370, pp. 709-722; Gilbert, M.R., Dignam, J.J., Armstrong, T.S., Wefel, J.S., Blumenthal, D.T., Vogelbaum, M.A., A randomized trial of bevacizumab for newly diagnosed glioblastoma (2014) N Engl J Med, 370, pp. 699-708; Castro, B.A., Aghi, M.K., Bevacizumab for glioblastoma: current indications, surgical implications, and future directions (2014) Neurosurg Focus, 37; Clark, A.J., Lamborn, K.R., Butowski, N.A., Chang, S.M., Prados, M.D., Clarke, J.L., Neurosurgical management and prognosis of patients with glioblastoma that progresses during bevacizumab treatment (2012) Neurosurgery, 70, pp. 361-370; Lu, K.V., Bergers, G., Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma (2013) CNS Oncol, 2, pp. 49-65; Lambrechts, D., de Haas HJL, S., Carmeliet, P., Scherer, S.J., Markers of response for the antiangiogenic agent bevacizumab (2013) J Clin Oncol, 31, pp. 1219-1230; Finley, S.D., Popel, A.S., Predicting the effects of anti-angiogenic agents targeting specific VEGF isoforms (2012) AAPS J, 3, pp. 500-509; Vempati, P., Popel, A.S., Gabhann, F.M., Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning (2014) Cytokine Growth Factor Rev, 25, pp. 1-19; Ferrara, N., Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action (2010) Mol Biol Cell, 21, pp. 687-690; D'Alessandris, Q.G., Martini, M., Cenci, T., Capo, G., Ricci-Vitiani, L., Larocca, L.M., VEGF isoforms as outcome biomarker for anti-angiogenic therapy in recurrent glioblastoma (2015) Neurology, 84, pp. 1906-1908; Finley, S.D., Engel-Stefanini, M.O., Imoukhuede, P.I., Popel, A.S., Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies (2011) BMC Syst Biol, 5, p. 193; D'Alessandris, Q.G., Biffoni, M., Martini, M., Runci, D., Buccarelli, M., Cenci, T., The clinical value of patient-derived glioblastoma tumorspheres in predicting treatment response (2017) Neuro-Oncology, 19, pp. 1097-1108; Guo, P., Xu, L., Pan, S., Brekken, R.A., Yang, S.T., Whitaker, G.B., Vascular endothelial growth factor isoforms display distinct activities in promoting tumor angiogenesis at different anatomic sites (2001) Cancer Res, 61, pp. 8569-8577; D'Alessandris, Q.G., Montano, N., Cenci, T., Martini, M., Lauretti, L., Bianchi, F., Targeted therapy with bevacizumab and erlotinib tailored to the molecular profile of patients with recurrent glioblastoma. Preliminary experience (2013) Acta Neurochir, 155, pp. 33-40; Berkman, R.A., Merrill, M.J., Reinhold, W.C., Monacci, W.T., Saxena, A., Clark, W.C., Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms (1993) J Clin Invest, 91, pp. 153-159; Kazemi, M., Carrer, A., Moimas, S., Zandon{\`a}, L., Bussani, R., Casagranda, B., VEGF121 and VEGF165 differentially promote vessel maturation and tumor growth in mice and humans (2016) Cancer Gene Ther, 23, pp. 125-132; Ferrara, N., Gerber, H.P., LeCouter, J., The biology of VEGF and its receptors (2003) Nat Med, 9, pp. 669-676; Finley, S.D., Popel, A.S., Effect of tumor microenvironment on tumor VEGF during snti-VEGF treatment: systems biology predictions (2013) J Natl Cancer Inst, 105, pp. 802-811; Iliadis, G., Selviaridis, P., Kalogera-Fountzila, A., Fragkoulidi, A., Baltas, D., Tselis, N., The importance of tumor volume in the prognosis of patients with glioblastoma: comparison of computerized volumetry and geometric models (2009) Strahlenther Onkol, 185, pp. 743-750; Upadhyay, N., Waldman, A.D., Conventional MRI evaluation of gliomas (2011) Br J Radiol, 84, pp. S107-SS11",
year = "2018",
doi = "10.1186/s12885-018-4442-2",
language = "English",
volume = "18",
journal = "BMC Cancer",
issn = "1471-2407",
publisher = "BioMed Central Ltd.",
number = "1",
}