Vitamin K1 exerts antiproliferative effects and induces apoptosis in three differently graded human colon cancer cell lines

Antonella Orlando, Michele Linsalata, Valeria Tutino, Benedetta D'Attoma, Maria Notarnicola, Francesco Russo

Research output: Contribution to journalArticlepeer-review

Abstract

Vitamin K1 has been demonstrated as having anticancer potentiality mainly in liver cancer cells. Beyond the reported mechanisms of cancer inhibition (cell cycle arrest and induction of apoptosis), a possible control by vitamin K1 on molecules affecting cell growth could be hypothesized. In the literature, few (if any) data are available on its antitumor effects on colon cancer cells. Therefore, the aims of the study were to investigate in three differently graded human colon cancer cell lines (Caco-2, HT-29, and SW480) the effects of increasing concentrations of vitamin K1 (from 10 μM to 200 μM) administered up to 72 h on (1) cell proliferation, (2) apoptosis with the possible involvement of the MAPK pathway, and (3) polyamine biosynthesis. Vitamin K1 treatment caused a significant antiproliferative effect and induced apoptosis in all the cell lines, with the involvement of the MAPK pathway. A concomitant and significant decrease in the polyamine biosynthesis occurred. This is the first study demonstrating a significant polyamine decrease in addition to the antiproliferative and proapoptotic effects following vitamin K1 administration to colon cancer cell lines. Therapeutically, combinations of vitamin K1 with polyamine inhibitors and/or analogues may represent a suitable option for chemoprevention and/or treatment in future strategies for colorectal cancer management.

Original languageEnglish
Article number296721
JournalBioMed Research International
Volume2015
DOIs
Publication statusPublished - 2015

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint

Dive into the research topics of 'Vitamin K1 exerts antiproliferative effects and induces apoptosis in three differently graded human colon cancer cell lines'. Together they form a unique fingerprint.

Cite this