Voltage gradient mapping and electrophysiologically guided cryoablation in children with AVNRT

Fabrizio Drago, Irma Battipaglia, Mario Salvatore Russo, Romolo Remoli, Vincenzo Pazzano, Gino Grifoni, Greta Allegretti, Massimo Stefano Silvetti

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Aims: Recently, voltage gradient mapping of Koch's triangle to find low-voltage connections, or 'voltage bridges', corresponding to the anatomic position of the slow pathway, has been introduced as a method to ablate atrioventricular nodal reentry tachycardia (AVNRT) in children. Thus, we aimed to assess the effectiveness of voltage mapping of Koch's triangle, combined with the search for the slow potential signal in 'low-voltage bridges', to guide cryoablation of AVNRT in children.

Methods and results: From June 2015 to May 2016, 35 consecutive paediatric patients (mean age 12.1 ± 4.5 years) underwent 3D-guided cryoablation of AVNRT at our Institution. Fifteen children were enrolled as control group (mean age 14 ± 4 years). A voltage gradient mapping of Koch's triangle was obtained in all patients, showing low-voltage connections in all children with AVNRT but not in controls. Prior to performing cryoablation, we looked for the typical 'hump and spike' electrogram, generally considered to be representative of slow pathway potential within a low-voltage bridge. In all patients the 'hump and spike' electrogram was found inside bridges of low voltage. Focal or high-density linear lesions, extended or not, were delivered guided by low-voltage bridge visualization. Acute success rate was 100%, and no recurrence was reported at a mean follow-up of 8 ± 3 months.

Conclusions: Voltage gradient mapping of Koch's triangle, combined with the search for the slow potential signal in low-voltage bridges, is effective in guiding cryoablation of AVNRT in paediatric patients, with a complete acute success rate and no AVNRT recurrences at mid-term follow-up.

Original languageEnglish
JournalEuropace
DOIs
Publication statusE-pub ahead of print - Apr 12 2017

Fingerprint

Atrioventricular Nodal Reentry Tachycardia
Cryosurgery
Pediatrics
Recurrence
Control Groups

Cite this

Voltage gradient mapping and electrophysiologically guided cryoablation in children with AVNRT. / Drago, Fabrizio; Battipaglia, Irma; Russo, Mario Salvatore; Remoli, Romolo; Pazzano, Vincenzo; Grifoni, Gino; Allegretti, Greta; Silvetti, Massimo Stefano.

In: Europace, 12.04.2017.

Research output: Contribution to journalArticle

@article{91aae0bdb0a24253bd09b33bacc44478,
title = "Voltage gradient mapping and electrophysiologically guided cryoablation in children with AVNRT",
abstract = "Aims: Recently, voltage gradient mapping of Koch's triangle to find low-voltage connections, or 'voltage bridges', corresponding to the anatomic position of the slow pathway, has been introduced as a method to ablate atrioventricular nodal reentry tachycardia (AVNRT) in children. Thus, we aimed to assess the effectiveness of voltage mapping of Koch's triangle, combined with the search for the slow potential signal in 'low-voltage bridges', to guide cryoablation of AVNRT in children.Methods and results: From June 2015 to May 2016, 35 consecutive paediatric patients (mean age 12.1 ± 4.5 years) underwent 3D-guided cryoablation of AVNRT at our Institution. Fifteen children were enrolled as control group (mean age 14 ± 4 years). A voltage gradient mapping of Koch's triangle was obtained in all patients, showing low-voltage connections in all children with AVNRT but not in controls. Prior to performing cryoablation, we looked for the typical 'hump and spike' electrogram, generally considered to be representative of slow pathway potential within a low-voltage bridge. In all patients the 'hump and spike' electrogram was found inside bridges of low voltage. Focal or high-density linear lesions, extended or not, were delivered guided by low-voltage bridge visualization. Acute success rate was 100{\%}, and no recurrence was reported at a mean follow-up of 8 ± 3 months.Conclusions: Voltage gradient mapping of Koch's triangle, combined with the search for the slow potential signal in low-voltage bridges, is effective in guiding cryoablation of AVNRT in paediatric patients, with a complete acute success rate and no AVNRT recurrences at mid-term follow-up.",
author = "Fabrizio Drago and Irma Battipaglia and Russo, {Mario Salvatore} and Romolo Remoli and Vincenzo Pazzano and Gino Grifoni and Greta Allegretti and Silvetti, {Massimo Stefano}",
year = "2017",
month = "4",
day = "12",
doi = "10.1093/europace/eux021",
language = "English",
journal = "Europace",
issn = "1099-5129",
publisher = "Oxford University Press",

}

TY - JOUR

T1 - Voltage gradient mapping and electrophysiologically guided cryoablation in children with AVNRT

AU - Drago, Fabrizio

AU - Battipaglia, Irma

AU - Russo, Mario Salvatore

AU - Remoli, Romolo

AU - Pazzano, Vincenzo

AU - Grifoni, Gino

AU - Allegretti, Greta

AU - Silvetti, Massimo Stefano

PY - 2017/4/12

Y1 - 2017/4/12

N2 - Aims: Recently, voltage gradient mapping of Koch's triangle to find low-voltage connections, or 'voltage bridges', corresponding to the anatomic position of the slow pathway, has been introduced as a method to ablate atrioventricular nodal reentry tachycardia (AVNRT) in children. Thus, we aimed to assess the effectiveness of voltage mapping of Koch's triangle, combined with the search for the slow potential signal in 'low-voltage bridges', to guide cryoablation of AVNRT in children.Methods and results: From June 2015 to May 2016, 35 consecutive paediatric patients (mean age 12.1 ± 4.5 years) underwent 3D-guided cryoablation of AVNRT at our Institution. Fifteen children were enrolled as control group (mean age 14 ± 4 years). A voltage gradient mapping of Koch's triangle was obtained in all patients, showing low-voltage connections in all children with AVNRT but not in controls. Prior to performing cryoablation, we looked for the typical 'hump and spike' electrogram, generally considered to be representative of slow pathway potential within a low-voltage bridge. In all patients the 'hump and spike' electrogram was found inside bridges of low voltage. Focal or high-density linear lesions, extended or not, were delivered guided by low-voltage bridge visualization. Acute success rate was 100%, and no recurrence was reported at a mean follow-up of 8 ± 3 months.Conclusions: Voltage gradient mapping of Koch's triangle, combined with the search for the slow potential signal in low-voltage bridges, is effective in guiding cryoablation of AVNRT in paediatric patients, with a complete acute success rate and no AVNRT recurrences at mid-term follow-up.

AB - Aims: Recently, voltage gradient mapping of Koch's triangle to find low-voltage connections, or 'voltage bridges', corresponding to the anatomic position of the slow pathway, has been introduced as a method to ablate atrioventricular nodal reentry tachycardia (AVNRT) in children. Thus, we aimed to assess the effectiveness of voltage mapping of Koch's triangle, combined with the search for the slow potential signal in 'low-voltage bridges', to guide cryoablation of AVNRT in children.Methods and results: From June 2015 to May 2016, 35 consecutive paediatric patients (mean age 12.1 ± 4.5 years) underwent 3D-guided cryoablation of AVNRT at our Institution. Fifteen children were enrolled as control group (mean age 14 ± 4 years). A voltage gradient mapping of Koch's triangle was obtained in all patients, showing low-voltage connections in all children with AVNRT but not in controls. Prior to performing cryoablation, we looked for the typical 'hump and spike' electrogram, generally considered to be representative of slow pathway potential within a low-voltage bridge. In all patients the 'hump and spike' electrogram was found inside bridges of low voltage. Focal or high-density linear lesions, extended or not, were delivered guided by low-voltage bridge visualization. Acute success rate was 100%, and no recurrence was reported at a mean follow-up of 8 ± 3 months.Conclusions: Voltage gradient mapping of Koch's triangle, combined with the search for the slow potential signal in low-voltage bridges, is effective in guiding cryoablation of AVNRT in paediatric patients, with a complete acute success rate and no AVNRT recurrences at mid-term follow-up.

U2 - 10.1093/europace/eux021

DO - 10.1093/europace/eux021

M3 - Article

C2 - 28407062

JO - Europace

JF - Europace

SN - 1099-5129

ER -